889 resultados para shape vs use
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.
Resumo:
There is little discussion of fatalism in the road safety literature, and limited research. However, fatalism is a potential barrier to participation in health-promoting behaviours, particularly among the populations of developing countries and to some extent in developed countries. Many people still believe in divine discretion and magical powers as causes of road crashes in different parts of the world. Fatalistic beliefs and beliefs in mystical powers and superstition appear to influence perceptions of crash risk and consequently lead people to take risks and neglect safety measures. Fatalistic beliefs may cause individuals to be resigned to risks because they cannot do anything to reduce these risks.
Resumo:
This thesis examines the theory of technological determinism, which espouses the view that technological change drives social change, through an analysis of the impact of new media on higher education models in the United States of America. In so doing, it explores the impacts of new media technologies on higher education, in particular, and society in general. The thesis reviews the theoretical shape of the discourse surrounding new media technologies before narrowing in on utopian claims about the impact of new media technologies on education. It tests these claims through a specific case study of higher education in the USA. The study investigates whether 'new' media technologies (eg the Internet) are resulting in new forms of higher education in the USA and whether the blurring of information and entertainment technologies has caused a similar blurring in education and entertainment providers. It uses primary data gathered by the author in a series of interviews with key education, industry and media representatives in North America in 1997. Chapter 2 looks at the literature and history surrounding several topics central to the thesis - the discourses of technological determinism, the history of technology use and adoption in education, and impacts of new media technologies on education. Chapter 3 presents the findings of the American case study on the relationship between media and higher education and Chapter 4 concludes and synthesises the investigation.