755 resultados para sexual indistinguishability
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.
Resumo:
A model was published by Lewis et al. (2002) to predict the mean age at first egg (AFE) for pullets of laying strains reared under non-limiting environmental conditions and exposed to a single change in photoperiod during the rearing stage. Subsequently, Lewis et al. (2003) reported the effects of two opposing changes in photoperiod, which showed that the first change appears to alter the pullet's physiological age so that it responds to the second change as though it had been given at an earlier age (if photoperiod was decreased), or later age (if photoperiod was increased) than the true chronological age. During the construction of a computer model based on these two publications, it became apparent that some of the components of the models needed adjustment. The amendments relate to (1) the standard deviation (S.D.) used for calculating the proportion of a young flock that has attained photosensitivity, (2) the equation for calculating the slope of the line relating AFE to age at transfer from one photoperiod to another, (3) the equation used for estimating the distribution of AFE as a function of the mean value, (4) the point of no return when pullets which have started spontaneous maturation in response to the current photoperiod can no longer respond to a late change in photoperiod and (5) the equations used for calculating the distribution of AFE when the trait is bimodal.
Resumo:
1. Data for modern egg-type hybrids reared on constant daylengths show that, as expected, they mature more quickly than earlier genotypes. However, the constant photoperiod which gives earliest sexual maturity has not changed as a result of selection and is 10 h for both early and modern genotypes. 2. Further analysis showed that the rate of delay in sexual maturity for constant photoperiods above 10 h is similar for modern and for early hybrids ( +0.29 d for each incremental one hour of photoperiod), the response of modern hybrids below 10 h ( +4.22 d for each one-hour reduction in photoperiod) is more than double that of early hybrids ( +1.71 d/h).
Resumo:
1. Shaver White and ISA Brown pullets were reared to 140 d in groups of 8 in cages on a 10-h photoperiod of incandescent light and maintained at an illuminance of 3 or 25 lux, or transferred from 3 to 25 lux or from 25 to 3 lux at 63 or 112 d of age. 2. There was no significant difference in sexual maturity, measured as eggs per 100 bird.d at 139 and 140 d, for ISA Brown maintained on 3 or 25 lux, but Shaver White pullets exposed to constant 3 lux matured significantly later than those maintained on 25 lux. 3. In Shaver Whites, sexual maturity was significantly delayed by an increase from 3 to 25 lux at 63 and 112 d, and advanced by a decrease from 25 to 3 lux at 112 d. Sexual maturity of ISA Browns was not significantly affected by a change in illuminance at 63 or 112 d, though responses were in the same direction as for Shaver Whites. 4. In both breeds, total feed consumed to 112 d was higher for birds on 3 lux than 25 lux, but lower between 112 d and 140 d when birds on 25 lux underwent rapid sexual development. In both breeds, body weight at 63 d was higher for birds exposed to 3 lux than 25 lux, but body weight gain thereafter was similar for the two light intensities. 5. In both breeds, plasma luteinising hormone (LH) concentration at 63 and 112 d was lower in birds maintained on 3 lux than 25 lux. At 63 and 112 d, transfers from 25 to 3 lux depressed, whereas transfers from 3 to 25 lux at 63 d, but not at 112 d, increased plasma LH. 6. Advances or delays in sexual maturity induced by changes in illuminance were not correlated with differences in feed intake, body weight gain, or with changes in plasma LH. 7. One possible explanation for the inverse relationship between the direction of change in illuminance at 63 and 112 d in pullets exposed to a 10-h photoperiod and the age at which they became sexually mature is that changes in light intensity and/or spectral composition affect the entrainment of the circadian rhythm of photoinducibility, to effect a phase shift in the photoinducible phase and/or the responsiveness of phototransduction pathways.
Resumo:
It is accepted that an important source of variation in the response of anoestrous ewes, to the introduction of rams, is the intensity of male stimulation. The aim of this study was to investigate strategies capable of increasing the impact and transmission of the ram stimuli. In Experiment 1, two groups of seven ewes (Bluefaced Leicester male x Swaledale female) were individually penned with one ram and for the next 6 h the rams either remained in the pen or were replaced hourly. Blood samples revealed no difference in the pattern of plasma LH secretion. In Experiment 2, three groups of 16 ewes were either introduced to one ram, individually (H) or in groups of 8 (L), or remained isolated. Ram introduction increased the plasma LH pulsatility (P < 0.001). H ewes displayed more (nine versus six) male-induced LH pulses (pulses occurring within the first 45 min) and more pulses per 8 h intervals than the L group of ewes (1.9 +/- 0.3 versus 1.3 +/- 0.3), but these differences were not significant. It was concluded that (i) frequent replacement of rams within a few hours following ram introduction to ewes does not further improve the response of ewes, especially if the ram:ewe ratio is high; (ii) the characterization of the plasma LH secretion parameters during a period of 6-8 h does not seem to be an effective method to detect small differences in the intensity of stimulation received by the ewes when exposed to rams; (iii) North Country Mule ewes (Bluefaced Leicester male x Swaledale female) in the UK respond to the presence of rams in spring (late oestrous/early anoestrous season) with an elevation in plasma LH secretion. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The widespread occurrence of feminized male fish downstream of some wastewater treatment works has led to substantial interest from ecologists and public health professionals. This concern stems from the view that the effects observed have a parallel in humans, and that both phenomena are caused by exposure to mixtures of contaminants that interfere with reproductive development. The evidence for a "wildlife-human connection" is, however, weak: Testicular dysgenesis syndrome, seen in human males, is most easily reproduced in rodent models by exposure to mixtures of antiandrogenic chemicals. In contrast, the accepted explanation for feminization of wild male fish is that it results mainly from exposure to steroidal estrogens originating primarily from human excretion. OBJECTIVES: We sought to further explore the hypothesis that endocrine disruption in fish is multi-causal, resulting from exposure to mixtures of chemicals with both estrogenic and antiandrogenic properties. METHODS: We used hierarchical generalized linear and generalized additive statistical modeling to explore the associations between modeled concentrations and activities of estrogenic and antiandrogenic chemicals in 30 U.K. rivers and feminized responses seen in wild fish living in these rivers. RESULTS: In addition to the estrogenic substances, antiandrogenic activity was prevalent in almost all treated sewage effluents tested. Further, the results of the modeling demonstrated that feminizing effects in wild fish could be best modeled as a function of their predicted exposure to both anti-androgens and estrogens or to antiandrogens alone. CONCLUSION: The results provide a strong argument for a multicausal etiology of widespread feminization of wild fish in U.K. rivers involving contributions from both steroidal estrogens and xeno-estrogens and from other (as yet unknown) contaminants with antiandrogenic properties. These results may add farther credence to the hypothesis that endocrine-disrupting effects seen in wild fish and in humans are caused by similar combinations of endocrine-disrupting chemical cocktails.
Resumo:
The physical and emotional changes that occur in adolescence are part of the process of sexual maturity. These changes occur irrespective of ability and are often aligned with psychological and social factors. When the nature of a disability has an inherent limitation in social awareness, as is the case for individuals with autism, the achievement of personal sexual identity can become much more complex. Challenges in supporting individuals in this respect can be caused by the sensitive aspects of inappropriate behaviour, the abstract nature of teaching the topic, and the general reluctance on the part of parents and staff to discuss sexuality in individuals with disabilities. This article explores how a residential school addressed this gap. It provides details of how this need was met for seven students and the process undertaken to involve staff, parents and other stakeholders to establish ongoing support.
Resumo:
Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a ‘failure in normal flowering development’ that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.