849 resultados para self-phase modulation
Resumo:
"April 1981."
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.
Resumo:
Impaired self-awareness may affect clients' emotional status, engagement in rehabilitation and community reintegration following traumatic brain injury (TBI). The study aimed to investigate the relationship between self-awareness, emotional distress and community integration in adults with TBI during the transition from hospital to the community. Thirty-four rehabilitation clients with TBI were assessed in the week before and 2 months after discharge home. Measures of self-awareness and emotional functioning were administered predischarge and repeated at follow-up along with a measure of community integration. Nonparametric tests were used to compare levels of self-awareness and emotional distress pre- and postdischarge, their interrelationships and association with community integration. Self-awareness significantly increased following discharge, and a trend towards increased depression was found. There were no consistent relationships found between level of self-awareness, emotional functioning, and community integration. The development of self-awareness in the immediate postdischarge phase suggests this is an important time for clinical interventions targeting compensation strategies and adjustment to disability.
Resumo:
Objectives: The first aim of this study was to examine the rate, pattern and correlates of inpatient admission during the first 3 months of treatment for first-episode psychosis (FEP). The second aim was to determine whether the pattern of inpatient admission during this period was associated with remission of psychotic symptoms or inpatient service use at 15-month follow-up. Method: One hundred and four consecutive patients with FEP at a specialist treatment service were approached to participate in a follow-up study. Patients were grouped on the basis of the pattern of inpatient admission (none, one, or multiple) during the first 3 months of treatment. Clinical ratings at baseline and 3-month follow-up, and ratings of remission of psychotic symptoms at 3 and 15-month follow-up, were available for two-thirds of the patients. Inpatient data for the 15-month follow-up period were derived from an electronic database for most patients (n = 98). Results: Eighty (76.9%) of the 104 patients were admitted to an inpatient unit during the first 3 months of treatment. Fifty-nine (56.7%) patients had a single admission and 21 (20.2%) had multiple admissions. At baseline, inpatient admission was associated with a diagnosis of affective psychosis and more severe behavioural and functional disturbance but not positive psychotic symptoms. Multiple admissions were associated with risks to self or others at baseline and 3-month follow-up, and lack of remission of positive symptoms at 3 and 15-month follow-up. There was no association between the pattern of inpatient admission during the initial 3-month period and inpatient service use during the following 12-month period. Conclusions: The substantial proportion of young patients with FEP admitted to hospital emphasizes the need for youth-friendly treatment environments and practices. Although patients with multiple admissions during the initial treatment period are less likely to achieve remission, these patients are no more likely to establish a pattern of revolving-door hospitalizations compared with other patients.
Resumo:
We present the first characterization of the mechanical properties of lysozyme films formed by self-assembly at the air-water interface using the Cambridge interfacial tensiometer (CIT), an apparatus capable of subjecting protein films to a much higher level of extensional strain than traditional dilatational techniques. CIT analysis, which is insensitive to surface pressure, provides a direct measure of the extensional stress-strain behavior of an interfacial film without the need to assume a mechanical model (e.g., viscoelastic), and without requiring difficult-to-test assumptions regarding low-strain material linearity. This testing method has revealed that the bulk solution pH from which assembly of an interfacial lysozyme film occurs influences the mechanical properties of the film more significantly than is suggested by the observed differences in elastic moduli or surface pressure. We have also identified a previously undescribed pH dependency in the effect of solution ionic strength on the mechanical strength of the lysozyme films formed at the air-water interface. Increasing solution ionic strength was found to increase lysozyme film strength when assembly occurred at pH 7, but it caused a decrease in film strength at pH 11, close to the pI of lysozyme. This result is discussed in terms of the significant contribution made to protein film strength by both electrostatic interactions and the hydrophobic effect. Washout experiments to remove protein from the bulk phase have shown that a small percentage of the interfacially adsorbed lysozyme molecules are reversibly adsorbed. Finally, the washout tests have probed the role played by additional adsorption to the fresh interface formed by the application of a large strain to the lysozyme film and have suggested the movement of reversibly bound lysozyme molecules from a subinterfacial layer to the interface.
Resumo:
Conventional detection scheme for self-mixing sensors uses an integrated photodiode within the laser package to monitor the self mixing signal. This arrangement can be simplified by directly obtaining the self-mixing signals across the laser diode itself and omitting the photodiode. This work reports on a Vertical-Cavity Surface-Emitting Laser (VCSEL) based selfmixing sensor using the laser junction voltage to obtain the selfmixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity and significant increase in bandwidth favoring high speed modulation. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory.
Resumo:
Normally ovulating women exhibit a decline in risk behaviours that may lead to sexual assault during the fertile phase of the menstrual cycle, whereas women using the Pill do not. The current study tests two explanatory models: the mood and fertility models. Self-reported risk and non-risk behaviours, mood, and risk perception in sexual assault and physical risk domains were assessed by testing fiftyone women at menstruation and during their fertile period. Based on the decline in risk behaviours shown in past research, the fertility model predicts that normally ovulating women will display greater risk perception during the fertile phase of their cycle. The mood model predicts that at menstruation, when negative mood is highest, risk perception will be increased and risk behaviours correspondingly reduced. Risk behaviours did not vary over the cycle or between groups. Overall, results support the mood model. Negative mood was greater at menstruation and positive mood during the fertile period for both groups, rational risk perception was correspondingly greater at menstruation. The fertility model was not supported as risk perception ratings did not vary in the expected direction and ratings were not specific to the sexual assault domain.
Resumo:
The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general non-linear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.
Resumo:
In psychophysics, cross-orientation suppression (XOS) and cross-orientation facilitation (XOF) have been measured by investigating mask configuration on the detection threshold of a centrally placed patch of sine-wave grating. Much of the evidence for XOS and XOF comes from studies using low and high spatial frequencies, respectively, where the interactions are thought to arise from within (XOS) and outside (XOF) the footprint of the classical receptive field. We address the relation between these processes here by measuring the effects of various sizes of superimposed and annular cross-oriented masks on detection thresholds at two spatial scales (1 and 7 c/deg) and on contrast increment thresholds at 7 c/deg. A functional model of our results indicates the following (1) XOS and XOF both occur for superimposed and annular masks. (2) XOS declines with spatial frequency but XOF does not. (3) The spatial extent of the interactions does not scale with spatial frequency, meaning that surround-effects are seen primarily at high spatial frequencies. (4) There are two distinct processes involved in XOS: direct divisive suppression and modulation of self-suppression. (5) Whether XOS or XOF wins out depends upon their relative weights and mask contrast. These results prompt enquiry into the effect of spatial frequency at the single-cell level and place new constraints on image-processing models of early visual processing. © ARVO.
Resumo:
We report the effect of a range of monovalent sodium salts on the molecular equilibrium swelling of a simple synthetic microphase separated poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) (PMMA88-b-PDEA223-b-PMMA88) pH-responsive hydrogel. Sodium acetate, sodium chloride, sodium bromide, sodium iodide, sodium nitrate and sodium thiocyanate were selected for study at controlled ionic strength and pH; all salts are taken from the Hofmeister series (HS). The influence of the anions on the expansion of the hydrogel was found to follow the reverse order of the classical HS. The expansion ratio of the gel measured in solutions containing the simple sodium halide salts (NaCl, NaBr, and NaI) was found to be strongly related to parameters which describe the interaction of the ion with water; surface charge density, viscosity coefficient, and entropy of hydration. A global study which also included nonspherical ions (NaAce, NaNO3 and NaSCN) showed the strongest correlation with the viscosity coefficient. Our results are interpreted in terms of the Collins model,(1) where larger ions have more mobile water in the first hydration cage immediately surrounding the gel, therefore making them more adhesive to the surface of the stationary phase of the gel and ultimately reducing the level of expansion.
Resumo:
A total pressure apparatus has been developed to measure vapour-liquid equilibrium data on binary mixtures at atmospheric and sub-atmospheric pressures. The method gives isothermal data which can be obtained rapidly. Only measurements of total pressure are made as a direct function of composition of synthetic liquid phase composition, the vapour phase composition being deduced through the Gibbs-Duhem relationship. The need to analyse either of the phases is eliminated. As such the errors introduced by sampling and analysis are removed. The essential requirements are that the pure components be degassed completely since any deficiency in degassing would introduce errors into the measured pressures. A similarly essential requirement was that the central apparatus would have to be absolutely leak-tight as any leakage of air either in or out of the apparatus would introduce erroneous pressure readings. The apparatus was commissioned by measuring the saturated vapour pressures of both degassed water and ethanol as a function of temperature. The pressure-temperature data on degassed water measured were directly compared with data in the literature, with good agreement. Similarly the pressure-temperature data were measured for ethanol, methanol and cyclohexane and where possible a direct comparison made with the literature data. Good agreement between the pure component data of this work and those available in the literature demonstrates firstly that a satisfactory degassing procedure has been achieved and that secondly the measurements of pressure-temperature are consistent for any one component; since this is true for a number of components, the measurements of both temperature and pressure are both self-consistent and of sufficient accuracy, with an observed compatibility between the precision/accuracy of the separate means of measuring pressure and temperature. The liquid mixtures studied were of ethanol-water, methanol-water and ethanol-cyclohexane. The total pressure was measured as the composition inside the equilibrium cell was varied at a set temperature. This gave P-T-x data sets for each mixture at a range of temperatures. A standard fitting-package from the literature was used to reduce the raw data to yield y-values to complete the x-y-P-T data sets. A consistency test could not be applied to the P-T-x data set as no y-values were obtained during the experimental measurements. In general satisfactory agreement was found between the data of this work and those available in the literature. For some runs discrepancies were observed, and further work recommended to eliminate the problems identified.
Resumo:
The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.
Resumo:
We report observations of the diffraction pattern resulting when a nematic liquid crystal is illuminated with two equal power, high intensity beams of light from an Ar+ laser. The time evolution of the pattern is followed from the initial production of higher diffraction orders to a final striking display arising as a result of the self-diffraction of the two incident beams. The experimental results are described with good approximation by a model assuming a phase distribution at the output plane of the liquid crystal in the form of the sum of a gaussian and a sinusoid.
Resumo:
Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent magnetoencephalography (MEG) and psychophysical measurements were used to characterize the pitch, heard when band-limited noise had a rapidly changing interaural phase difference. Several interesting features emerged: First, the pitch was perceptually lateralized, in agreement with the lateralization of the evoked changes in MEG spectral power, and its salience depended on dichotic binaural presentation. Second, the frequency of the pure tone that matched the binaural pitch lay within a lower spectral sideband of the phase-modulated noise and followed the frequency of that sideband when the modulation frequency or center frequency and bandwidth of the noise changed. Thus, the binaural pitch depended on the processing of binaural information in that lower sideband.