908 resultados para seasonal and spatial variations
Resumo:
This paper provides an insight into the long-term trends of the four seasonal and annual precipitations in various climatological regions and sub-regions in India. The trends were useful to investigate whether Indian seasonal rainfall is changing in terms of magnitude or location-wise. Trends were assessed over the period of 1954-2003 using parametric ordinary least square fits and non-parametric Mann-Kendall technique. The trend significance was tested at the 95% confidence level. Apart from the trends for individual climatological regions in India and the average for the whole of India, trends were also specifically determined for the possible smaller geographical areas in order to understand how different the trends would be from the bigger spatial scales. The smaller geographical regions consist of the whole southwestern continental state of Kerala. It was shown that there are decreasing trends in the spring and monsoon rainfall and increasing trends in the autumn and winter rainfalls. These changes are not always homogeneous over various regions, even in the very short scales implying a careful regional analysis would be necessary for drawing conclusions regarding agro-ecological or other local projects requiring change in rainfall information. Furthermore, the differences between the trend magnitudes and directions from the two different methods are significantly small and fall well within the significance limit for all the cases investigated in Indian regions (except where noted). © 2010 Springer-Verlag.
Resumo:
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 mu g g (-aEuro parts per thousand 1) dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.
Resumo:
Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.
Resumo:
Production rates and production/biomass ratios have been estimated for a large number of macrobenthic species (Hargrave, 1977; Robertson, 1979). The usefulness of such estimates is limited by a lack of information on their temporal and spatial stability; we are aware of only one study (Sarvala, 1980) in which production has been estimated for more than one year. The present study investigates the stability of the production (P), biomass (B) and P/B values of two polychaete species, Nephtys hombergi Savigny and Ampharete acutifrons (Grube), over a 5-year period.
Resumo:
Seasonal and inter-annual variations in phytoplankton community abundance in the Bay of Biscay are studied. Preliminarily processed by the National Aeronautics and Space Administration (NASA) to yield normalized water-leaving radiance and the top-of-the-atmosphere solar radiance, Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Coastal Zone Color Scanner (CZCS) data are further supplied to our dedicated retrieval algorithms to infer the sought for parameters. By applying the National Oceanic and Atmospheric Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) data, the surface reflection coefficient in the only band in the visible spectrum is derived and employed for analysis. Decadal bridged time series of variations of diatom-dominated phytoplankton and green dinoflagellate Lepidodinium chlorophorum within the shelf zone and the coccolithophore Emiliania huxleyi in the pelagic area of the Bay are documented and analysed in terms of impacts of some biogeochemical and geophysical forcing factors.
Resumo:
A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.
Resumo:
This thesis explores the possibilities of spatial hearing in relation to sound perception, and presents three acousmatic compositions based on a musical aesthetic that emphasizes this relation in musical discourse. The first important characteristic of these compositions is the exclusive use of sine waves and other time invariant sound signals. Even though these types of sound signals present no variations in time, it is possible to perceive pitch, loudness, and tone color variations as soon as they move in space due to acoustic processes involved in spatial hearing. To emphasize the perception of such variations, this thesis proposes to divide a tone in multiple sound units and spread them in space using several loudspeakers arranged around the listener. In addition to the perception of sound attribute variations, it is also possible to create rhythm and texture variations that depend on how sound units are arranged in space. This strategy permits to overcome the so called "sound surrogacy" implicit in acousmatic music, as it is possible to establish cause-effect relations between sound movement and the perception of sound attribute, rhythm, and texture variations. Another important consequence of using sound fragmentation together with sound spatialization is the possibility to produce diffuse sound fields independently from the levels of reverberation of the room, and to create sound spaces with a certain spatial depth without using any kind of artificial sound delay or reverberation.
Resumo:
Tese de doutoramento, Ciências do Mar ( Processos de Ecossistemas Marinhos), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2012
Resumo:
Motivation for the present study is to improve the scienti c understanding on the prominent gap areas in the average three-dimensional distribution of clouds and their impact on the energetics of the earth-atmosphere system. This study is focused on the Indian subcontinent and the surrounding oceans bound within the latitude-longitude bands of 30 S to 30 N and 30 E to 110 E. Main objectives of this study are to : (i) estimate the monthly and seasonal mean vertical distributions of clouds and their spatial variations (which provide the monthly and seasonal mean 3-dimensional distributions of clouds) using multi-year satellite data and investigate their association with the general circulation of the atmosphere, (ii) investigate the characteristics of the `pool of inhibited cloudiness' that appear over the southwest Bay of Bengal during the Asian summer monsoon season (revealed by the 3-dimensional distribution of clouds) and identify the potential mechanisms for its genesis, (iii) investigate the role of SST and atmospheric thermo-dynamical parameters in regulating the vertical development and distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds and their descending nature using lidar observations at Thiruvananthapuram (8.5 N, 77 E), a tropical coastal station at the southwest Peninsular India, and (v) assessment of the impact of clouds on the energetics of the earth-atmosphere system, by estimating the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA) and latent heating of the atmosphere by precipitating clouds using satellite data
Resumo:
Phosphorus fractionation was employed to find the bioavailability of phosphorus and its seasonal variations in the Panangad region of Cochin estuary, the largest estuarine system in the southwest coast of India. Sequential extraction of the surficial sediments using chelating agents was taken as a tool for this. Phosphate in the water column showed seasonal variations, with high values during the monsoon months, suggesting external runoff. Sediment texture was found to be the main factor influencing the spatial distribution of the geochemical parameters in the study region. Similarly, total phosphorus also showed granulometric dependence and it ranged between 319.54 and 2,938.83 μg/g. Calcium-bound fraction was the main phosphorus pool in the estuary. Significant spatial variations were observed for all bioavailable fractions; iron-bound inorganic phosphorus (5.04–474.24 μg/g), calcium-bound inorganic phosphorus (11.16–826.09 μg/g), and acidsoluble organic phosphorus (22.22–365.86 μg/g). Among the non-bioavailable phosphorus, alkalisoluble organic fraction was the major one (51.92– 1,002.45 μg/g). Residual organic phosphorus was K. R. Renjith (B) · N. Chandramohanakumar · M. M. Joseph Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 682016, Kerala, India e-mail: renjithaqua@gmail.com comparatively smaller fraction (3.25–14.64% of total). The sandy and muddy stations showed distinct fractional composition and the speciation study could endorse the overall geochemical character. There could be buffering of phosphorus, suggested by the increase in the percentage of bioavailable fractions during the lean premonsoon period, counteracting the decreases in the external loads. Principal component analysis was employed to find the possible processes influencing the speciation of phosphorus in the study region
Resumo:
Banded sediments outcrop widely in the intertidal zone of the Severn Estuary and have been suggested, on the basis of textural analysis, to have formed in response to seasonal variations in sea temperature and windiness (Holocene, 14 (2004) 536). Here palynological and sedimentological analyses of banded sediments of mid-Holocene date from Gold Cliff, on the Welsh side of the Severn Estuary, are combined to test and further develop the hypothesis of seasonal deposition. Pollen percentage and concentration data are presented from a short sequence of bands to establish whether textural variations in the bands coincide with variations in pollen content reflecting seasonal flowering patterns. It is shown that fine-grained band parts contain higher total pollen concentrations, and a higher proportion of pollen from late spring- to summer-flowering plants, than coarse-grained band parts. Pollen in the coarser deposits appears primarily to reflect deposition from the buffering `reservoir' of suspended pollen in the estuarine water-body and from rivers, when there is little pollen in the air in winter, while the finer sediments contain pollen deposited from the atmosphere during the flowering season, superimposed on these `background' sources. The potential of such deposits for refining chronologies and identifying seasonality of coastal processes is noted, and the results of charcoal particle analysis of the bands presented as an example of how they have the potential to shed light on seasonal and annual patterns of human activity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Vegetation distribution and state have been measured since 1981 by the AVHRR (Advanced Very High Resolution Radiometer) instrument through satellite remote sensing. In this study a correction method is applied to the Pathfinder NDVI (Normalized Difference Vegetation Index) data to create a continuous European vegetation phenology dataset of a 10-day temporal and 0.1° spatial resolution; additionally, land surface parameters for use in biosphere–atmosphere modelling are derived. The analysis of time-series from this dataset reveals, for the years 1982–2001, strong seasonal and interannual variability in European land surface vegetation state. Phenological metrics indicate a late and short growing season for the years 1985–1987, in addition to early and prolonged activity in the years 1989, 1990, 1994 and 1995. These variations are in close agreement with findings from phenological measurements at the surface; spring phenology is also shown to correlate particularly well with anomalies in winter temperature and winter North Atlantic Oscillation (NAO) index. Nevertheless, phenological metrics, which display considerable regional differences, could only be determined for vegetation with a seasonal behaviour. Trends in the phenological phases reveal a general shift to earlier (−0.54 days year−1) and prolonged (0.96 days year−1) growing periods which are statistically significant, especially for central Europe.
Resumo:
For the predominantly agricultural River Windrush catchment, spatial variations in concentrations of nitrogen species and suspended sediment were strongly related to geology and land use. Temporal patterns of NO3- and NO2- concentrations during the three year study were highly correlated with seasonal variations in baseflow. Suspended sediment concentrations were mainly controlled by storm discharge. Variations in total ammonium concentrations reflected both flow controls. Suspended sediment effects total ammonium and organic nitrogen transport to the aquatic system, and in-stream cycling processes. Organic nitrogen did not display consistent seasonal variations, but concentrations occasionally exceeding those of NO3-. Overall, NO3- and organic nitrogen were the most important at 60% and -40%, of total nitrogen load, respectively. Future assessments of agriculture impact on river water quality should consider the total nitrogen load, and not solely that of NO3-.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.