977 resultados para ricostruzione 3D triangolazione laser computervision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tunable DS-DBR laser is demonstrated for uncooled WDM C-band channel generation with tight spacing (SOGHz) and low thermal drift (±2.5GHz) up to 70°C. 2.5Gb/s direct modulation with transmission over a 75km link is achieved. © 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present for the first time a comprehensive study of the static and dynamic properties of a coolerless tunable three-section DBR laser. Wavelength tuning and thermal drift under uncooled conditions are investigated. Variance of modulation bandwidth with temperature rise and wavelength control is studied, and then verified by uncooled direct modulation performance with clear open eye diagrams. Satisfactory direct modulation is demonstrated at bit rate of up to 6Gbit/s, which is believed to be the fastest out of devices of similar structure so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4Gbit/s directly modulated DBR laser is demonstrated with nanometre scale thermal tuning over an extended 20-70°C temperature range. >40dB side mode suppression over the entire temperature range is achieved. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An uncooled three-section tunable distributed Bragg reflector laser is demonstrated as an athermal transmitter for low-cost uncooled wavelength-division-multiplexing (WDM) systems with tight channel spacing. A ±0.02-nm thermal wavelength drift is achieved under continuous-wave operation up to 70 °C. Dynamic sidemode suppression ratio of greater than 35 dB is consistently obtained under 3.125-Gb/s direct modulation over a 20 °C-70 °C temperature range, with wavelength variation of as low as ±0.2 nm. This indicates that more than an order of magnitude reduction in coarse WDM channel spacing is possible using this source. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3-D numerical model for pulsed laser transformation hardening (LTH) is developed using the finite element method. In this model, laser spatial and temporal intensity distribution, temperature-dependent thermophysical properties of material, and multi-phase transformations are considered. The influence of laser temporal pulse shape on connectivity of hardened zone, maximum surface temperature of material and hardening depth is numerically investigated at different pulse energy levels. Results indicate that these hardening parameters are strongly dependent on the temporal pulse shape. For the rectangular temporal pulse shape, the temperature field obtained from this model is in excellent agreement with analytical solution, and the predicted hardening depth is favorably compared with experimental one. It should be pointed out that appropriate temporal pulse shape should be selected according to pulse energy level in order to achieve desirable hardening quality under certain laser spatial intensity distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以激光熔凝表面强韧化处理为背景,应用空间的弹塑性有限单元和高精度的数值算法、同时考虑材料组织性能的变化来模拟材料的温度场。主要研究激光熔凝加工中瞬时温度场数值模拟,同时考虑相变潜热的影响,为第二步热应力场及残余应力的数值模拟做准备。最后用算例验证了模型的正确性,并给出了不同时刻温度场的分布。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled-cavity passive harmonic mode-locking of a quantum well based vertical-external-cavity surface-emitting laser has been demonstrated, yielding an output pulse train of 1.5 ps pulses at a repetition rate of 80 GHz and with an average power of 80 mW. Harmonic mode-locking results from coupling between the main laser cavity and a cavity formed within the substrate of the saturable absorber structure. Mode-locking on the second harmonic of the substrate cavity allows a train of 1.1 ps pulses to be generated at a repetition rate of 147 GHz with 40 mW average power. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of thermal field was studied in laser processing. The 3-D finite element model of transient thermal calculation is given by thermal conductive equation. The effects of phase transformation latent are considered. Numerical example is given to verify the model. Finally the real example of transient thermal field is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is assumed that both translational and rotational nonequilibrium cross-relaxations play a role simultaneoulsy in low pressure supersonic cw HF chemical laser amplifier. For two-type models of gas flow medium with laminar and turbulent flow diffusion mixing, the expressions of saturated gain spectrum are derived respectively, and the numerical calculations are performed as well. The numerical results show that turbulent flow diffusion mixing model is in the best agreement with the experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focused laser micromachining in an optical microscope system is used to prototype packages for optoelectronic devices and to investigate new materials with potential applications in packaging. Micromachined thin films are proposed as mechanical components to locate fibres and other optical and electrical components on opto-assemblies. This paper reports prototype structures which are micromachined in silicon carbide to produce beams 5 μm thick by (i) laser cutting a track in a SiC coated Si wafer, (ii) undercutting by anisotropic silicon etching using KOH in water, and (iii) trimming if necessary with the laser system. This approach has the advantage of fast turn around and proof of concept. Mechanical test data are obtained from the prototype SiC beam package structures by testing with a stylus profilometer. The Youngs modulus obtained for chemical vapour deposited silicon carbide is 360 +/- 50 GPa indicating that it is a promising material for packaging applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimised ultrafast laser ablation can result in almost complete ionisation of the target material and the formation of a high velocity plasma jet. Collisions with the ambient gas behind the shock front cools the material resulting in the formation of mainly spherical, single crystal nanoscale particles in the condensate. This work characterises the nanoscale structures produced by the ultrafast laser interactions in He atmospheres at STP with Ni and Al. High resolution transmission electron microscopy was employed to study the microstructure of the condensates and to classify the production of particles forms as a function of the illumination conditions.