973 resultados para realistic neural modeling
Resumo:
BACKGROUND The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures. RESULTS This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. CONCLUSIONS The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
L'activité humaine affecte particulièrement la biodiversité, qui décline à une vitesse préoccupante. Parmi les facteurs réduisant la biodiversité, on trouve les espèces envahissantes. Symptomatiques d'un monde globalisé où l'échange se fait à l'échelle de la planète, certaines espèces, animales ou végétales, sont introduites, volontairement ou accidentellement par l'activité humaine (par exemple lors des échanges commerciaux ou par les voyageurs). Ainsi, ces espèces atteignent des régions qu'elles n'auraient jamais pu coloniser naturellement. Une fois introduites, l'absence de compétiteur peut les rendre particulièrement nuisibles. Ces nuisances sont plus ou moins directes, allant de problèmes sanitaires (p. ex. les piqûres très aigües des fourmis de feu, originaires d'Amérique du Sud et colonisant à une vitesse fulgurante les USA, l'Australie ou la Chine) à des nuisances sur la biodiversité (p. ex. les ravages de la perche du Nil sur la diversité unique des poissons Cichlidés du Lac Victoria). Il est donc important de pouvoir prévenir de telles introductions. De plus, pour le biologiste, ces espèces représentent une rare occasion de pouvoir comprendre les mécanismes évolutifs et écologiques qui expliquent le succès des envahissantes dans un monde où les équilibres sont bouleversés. Les modèles de niche environnementale sont un outil particulièrement utile dans le cadre de cette problématique. En reliant des observations d'espèces aux conditions environnementales où elles se trouvent, ils peuvent prédire la distribution potentielle des envahissantes, permettant d'anticiper et de mieux limiter leur impact. Toutefois, ils reposent sur des hypothèses pas évidentes à démontrer. L'une d'entre elle étant que la niche d'une espèce reste constante dans le temps, et dans l'espace. Le premier objectif de mon travail est de comparer si la niche d'une espèce envahissante diffère entre sa distribution d'origine native et celle d'origine introduite. En étudiant 50 espèces de plantes et 168 espèces de Mammifères, je démontre que c'est le cas et que par corolaire, il est possible de prédire leurs distributions. La deuxième partie de mon travail consiste à comprendre quelles seront les interactions entre le changement climatiques et les envahissantes, afin d'estimer leur impact sous un climat réchauffé. En étudiant la distribution de 49 espèces de plantes envahissantes, je démontre que les montagnes, régions relativement préservée par ce problème, deviendront bien plus exposées aux risques d'invasions biologiques. J'expose aussi comment les interactions entre l'activité humaine, le réchauffement climatique et les espèces envahissantes menacent la vigne sauvage en Europe et propose des zones géographiques particulièrement adaptée pour sa conservation. Enfin, à une échelle beaucoup plus locale, je montre qu'il est possible d'utiliser ces modèles de niches le long d'une rivière à une échelle extrêmement fine (1 mètre), potentiellement utile pour rationnaliser des mesures de conservations sur le terrain. - Biodiversity is significantly negatively affected by human activity. Invasive species are one of the most important factors causing biodiversity's decline. Intimately linked to the era of global trade, some plant or animal species can be accidentally or casually introduced with human activity (e.g. trade or travel). In this way, these species reach areas they could never reach through natural dispersal. Once naturalized, the lack of competitors can make these species highly noxious. Their effect is more or less direct, from sanitary problems (e.g. the harmful sting of Fire Ants, originating from South America and now spreading throughout USA, China and Australia) or can affect biodiversity (e.g. the Nile perch, devastating the one of the richest hotspot of Cichlid fishes diversity in Lake Victoria). It is thus important to prevent such harmful introductions. Moreover, invasive species represent for biologists one of the rare occasions to understand the evolutionary and ecological mechanisms behind the success of invaders in a world where natural equilibrium is already disturbed. Environmental niche models are particularly useful to tackle this problematic. By relating species observation to the environmental conditions where they occur, they can predict the potential distribution of invasive species, allowing a better anticipation and thus limiting their impact. However, they rely on strong assumption, one of the most important being that the modeled niche remains constant through space and time. The first aim of my thesis is to quantify the difference between the native and the invaded niche. By investigating 50 plant and 168 mammal species, I show that the niche is at least partially conserved, supporting for reliable predictions of invasive' s potential distributions. The second aim of my thesis is to understand the possible interactions between climate change and invasive species, such as to assess their impact under a warmer climate. By studying 49 invasive plant species, I show that mountain areas, which were relatively preserved, will become more suitable for biological invasions. Additionally, I show how interactions between human activity, global warming and invasive species are threatening the wild grapevine in Europe and propose geographical areas particularly adapted for conservation measures. Finally, at a much finer scale where conservation plannings ultimately take place, I show that it is possible to model the niche at very high resolution (1 meter) in an alluvial area allowing better prioritizations for conservation.
Resumo:
We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.
Resumo:
We present a continuum formalism for modeling growing random networks under addition and deletion of nodes based on a differential mass balance equation. As examples of its applicability, we obtain new results on the degree distribution for growing networks with a uniform attachment and deletion of nodes, and complete some recent results on growing networks with preferential attachment and uniform removal
Resumo:
We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.
Resumo:
In this project, we have investigated new ways of modelling and analysis of human vasculature from Medical images. The research was divided in two main areas: cerebral vasculature analysis and coronary arteries modeling. Regarding cerebral vasculature analysis, we have studed cerebral aneurysms, internal carotid and the Circle of Willis (CoW). Aneurysms are abnormal vessel enlargements that can rupture causing important cerebral damages or death. The understanding of this pathology, together with its virtual treatment, and image diagnosis and prognosis, includes identification and detailed measurement of the aneurysms. In this context, we have proposed two automatic aneurysm isolation method, to separate the abnormal part of the vessel from the healthy part, to homogenize and speed-up the processing pipeline usually employed to study this pathology, [Cardenes2011TMI, arrabide2011MedPhys]. The results obtained from both methods have been also compared and validatied in [Cardenes2012MBEC]. A second important task here the analysis of the internal carotid [Bogunovic2011Media] and the automatic labelling of the CoW, Bogunovic2011MICCAI, Bogunovic2012TMI]. The second area of research covers the study of coronary arteries, specially coronary bifurcations because there is where the formation of atherosclerotic plaque is more common, and where the intervention is more challenging. Therefore, we proposed a novel modelling method from Computed Tomography Angiography (CTA) images, combined with Conventional Coronary Angiography (CCA), to obtain realistic vascular models of coronary bifurcations, presented in [Cardenes2011MICCAI], and fully validated including phantom experiments in [Cardene2013MedPhys]. The realistic models obtained from this method are being used to simulate stenting procedures, and to investigate the hemodynamic variables in coronary bifurcations in the works submitted in [Morlachi2012, Chiastra2012]. Additionally, another preliminary work has been done to reconstruct the coronary tree from rotational angiography, and published in [Cardenes2012ISBI].
Resumo:
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).
Resumo:
Background: Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results: This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC.Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Resumo:
Time scale parametric spike train distances like the Victor and the van Rossum distancesare often applied to study the neural code based on neural stimuli discrimination.Different neural coding hypotheses, such as rate or coincidence coding,can be assessed by combining a time scale parametric spike train distance with aclassifier in order to obtain the optimal discrimination performance. The time scalefor which the responses to different stimuli are distinguished best is assumed to bethe discriminative precision of the neural code. The relevance of temporal codingis evaluated by comparing the optimal discrimination performance with the oneachieved when assuming a rate code.We here characterize the measures quantifying the discrimination performance,the discriminative precision, and the relevance of temporal coding. Furthermore,we evaluate the information these quantities provide about the neural code. Weshow that the discriminative precision is too unspecific to be interpreted in termsof the time scales relevant for encoding. Accordingly, the time scale parametricnature of the distances is mainly an advantage because it allows maximizing thediscrimination performance across a whole set of measures with different sensitivitiesdetermined by the time scale parameter, but not due to the possibility toexamine the temporal properties of the neural code.