819 resultados para rater reliability
Resumo:
Undergraduates rated scripts describing the performance of different instructors in the following order: two positive or negative scripts followed by an average script; or two average scripts followed by a positive or a negative script. Context effects were assessed by comparing ratings of the target stimulus in the context and in the context-free control conditions. Several individual difference variables were measured as possible moderators of this phenomenon. Results indicated robust contrast effects mediated by beliefs in the variability of human nature in the extreme context conditions. In the positive context condition, high scorers in Variability were not affected by context, whereas medium or low scorers in Variability exhibited contrast effects. In the negative context condition, high scorers in Variability exhibited a more extreme contrast effect than medium or low scorers in Variability. In the average context conditions, contrast was observed only when the target was positive.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Conventional reliability models for parallel systems are not applicable for the analysis of parallel systems with load transfer and sharing. In this short communication, firstly, the dependent failures of parallel systems are analyzed, and the reliability model of load-sharing parallel system is presented based on Miner cumulative damage theory and the full probability formula. Secondly, the parallel system reliability is calculated by Monte Carlo simulation when the component life follows the Weibull distribution. The research result shows that the proposed reliability mathematical model could analyze and evaluate the reliability of parallel systems in the presence of load transfer.
Resumo:
Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant’s ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator.
In order to perform the assessment from the perspective of the facility owners (e.g., electric power utilities, independent power producers), an optimal design and operating strategy of the hybrid system is determined for both the amine storage and partial capture configurations. A linear optimization model is developed to determine the optimal component sizes for the hybrid system and capture rates while meeting constraints on annual average emission targets of CO2, and variability of the combined power output. Results indicate that there are economic benefits of flexible operation relative to conventional CCS, and demonstrate that the hybrid system could operate as an energy storage system: providing an effective pathway for wind power integration as well as a mechanism to mute the variability of intermittent wind power.
In order to assess the performance of the hybrid system from the perspective of the system operator, a modified Unit Commitment/ Economic Dispatch model is built to consider and represent the techno-economic aspects of operation of the hybrid system within a power grid. The hybrid system is found to be effective in helping the power system meet an average CO2 emissions limit equivalent to the CO2 emission rate of a state-of-the-art natural gas plant, and to reduce power system operation costs and number of instances and magnitude of energy and reserve scarcity.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.
Resumo:
To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.
Resumo:
Background
There is a growing impetus across the research, policy and practice communities for children and young people to participate in decisions that affect their lives. Furthermore, there is a dearth of general instruments that measure children and young people’s views on their participation in decision making. This paper presents the reliability and validity of the Child and Adolescent Participation in Decision Making Questionnaire (CAP-DMQ) and specifically looks at a population of looked-after children where a lack of participation in decision making is an acute issue.
Methods
The participants were 151 looked after children and adolescents between 10-23 years of age who completed the 10 item CAP-DMQ. Of the participants 113 were in receipt of an advocacy service that had an aim of increasing participation in decision-making with the remaining participants not having received this service.
Results
The results showed that the CAP-DMQ had good reliability (Cronbach’s alpha = .94) and showed promising uni-dimensional construct validity through an exploratory factor analysis. The items in the CAP-DMQ also demonstrated good content validity by overlapping with prominent models of child and adolescent participation (Lundy 2007) and decision making (Halpern 2014). A regression analysis showed that age and gender were not significant predictors of CAP-DMQ scores but receipt of advocacy was a significant predictor of scores (effect size d=.88), thus showing appropriate discriminant criterion validity.
Conclusion
Overall, the CAP-DMQ showed good reliability and validity. Therefore, the measure has excellent promise for theoretical investigation in the area of child and adolescent participation in decision making and equally shows empirical promise for use as a measure in evaluating services which have increasing the participation of children and adolescents in decision making as an intended outcome.
Resumo:
The assessment of adolescent drinking behavior is a complex task, complicated by variability in drinking patterns, the transitory and developmental nature of the behavior and the reliance (for large scale studies) on self-report questionnaires. The Adolescent Alcohol Involvement Scale (Mayer & Filstead, 1979) is a 14-item screening tool designed to help to identify alcohol misusers or more problematic drinkers. The present study utilized a large sample (n = 4066) adolescents from Northern Ireland. Results of Confirmatory Factor Analyses and reliability estimates revealed that the 14-items share sufficient common variance that scores can be considered to be reliable and that the 14 items can be scored to provide a composite alcohol use score.
Resumo:
The introduction of a poster presentation as a formative assessment method over a multiple choice examination after the first phase of a three phase “health and well-being” module in an undergraduate nursing degree programme was greeted with a storm of criticism from fellow lecturers stating that poster presentations are not valid or reliable and totally irrelevant to the assessment of learning in the module. This paper seeks to investigate these criticisms by investigating the literature regarding producing nurses fit for practice, nurse curriculum development and wider nurse education, the purpose of assessment, validity and reliability to critically evaluate the poster presentation as a legitimate assessment method for these aims.
Resumo:
Communication can be seen as one of the most important features to manage conflicts and the stress of the work teams that operate in environments with strong pressure, complex operations and continuous risk, which are aspects that characterize a high reliability organization. This article aims to highlight the importance of communication in high-reliability organizations, having as object of study the accidents and incidents in civil aviation area. It refers to a qualitative research, outlined by documental analysis based on investigations conducted by the Federal Aviation Administration and the Center of Investigation and Prevention of Aeronautical Accidents. The results point out that human errors account for 60 to 80 percent of accidents and incidents. Most of these occurrences are attributed to miscommunication between the professionals involved with the air and ground operation, such as pilots, crewmembers and maintenance staff, and flight controllers. Inappropriate tone of voice usage, difficulties to understand different accents between the issuer and the receiver or even difficulty to perceive red flags between the lines of verbal and non-verbal communication, are elements that contribute to the fata of understanding between people involved in the operation. As a research limitation this present research pointed out a lack of a special category of "interpersonal communications failures" in the official agency reports. So, the researchers must take the conceptual definition of "social ability", communication implied, to classify behaviors and communication matters accordingly. Other research finding indicates that communication is superficially approached in the contents of air operations courses what could mitigate the lack of communications skills as a social ability. Part of the research findings refers to the contents of communication skills development into the program to train professional involved in air flight and ground operations. So, it is expected that this present article gives an appropriate highlight towards the improvement of flight operations training programs. Developing communication skills among work teams in high reliability organizations can contribute to mitigate stress, accidents and incidents in Civil Aviation Field. The original contribution of this article is the proposal of the main contents that should be developed in a Communication Skills Training Program, specially addressed to Civil Aviation operations.
Resumo:
BACKGROUND: The recently developed Context Assessment for Community Health (COACH) tool aims to measure aspects of the local healthcare context perceived to influence knowledge translation in low- and middle-income countries. The tool measures eight dimensions (organizational resources, community engagement, monitoring services for action, sources of knowledge, commitment to work, work culture, leadership, and informal payment) through 49 items. OBJECTIVE: The study aimed to explore the understanding and stability of the COACH tool among health providers in Vietnam. DESIGNS: To investigate the response process, think-aloud interviews were undertaken with five community health workers, six nurses and midwives, and five physicians. Identified problems were classified according to Conrad and Blair's taxonomy and grouped according to an estimation of the magnitude of the problem's effect on the response data. Further, the stability of the tool was examined using a test-retest survey among 77 respondents. The reliability was analyzed for items (intraclass correlation coefficient (ICC) and percent agreement) and dimensions (ICC and Bland-Altman plots). RESULTS: In general, the think-aloud interviews revealed that the COACH tool was perceived as clear, well organized, and easy to answer. Most items were understood as intended. However, seven prominent problems in the items were identified and the content of three dimensions was perceived to be of a sensitive nature. In the test-retest survey, two-thirds of the items and seven of eight dimensions were found to have an ICC agreement ranging from moderate to substantial (0.5-0.7), demonstrating that the instrument has an acceptable level of stability. CONCLUSIONS: This study provides evidence that the Vietnamese translation of the COACH tool is generally perceived to be clear and easy to understand and has acceptable stability. There is, however, a need to rephrase and add generic examples to clarify some items and to further review items with low ICC.
Resumo:
Surface flow types (SFT) are advocated as ecologically relevant hydraulic units, often mapped visually from the bankside to characterise rapidly the physical habitat of rivers. SFT mapping is simple, non-invasive and cost-efficient. However, it is also qualitative, subjective and plagued by difficulties in recording accurately the spatial extent of SFT units. Quantitative validation of the underlying physical habitat parameters is often lacking, and does not consistently differentiate between SFTs. Here, we investigate explicitly the accuracy, reliability and statistical separability of traditionally mapped SFTs as indicators of physical habitat, using independent, hydraulic and topographic data collected during three surveys of a c. 50m reach of the River Arrow, Warwickshire, England. We also explore the potential of a novel remote sensing approach, comprising a small unmanned aerial system (sUAS) and Structure-from-Motion photogrammetry (SfM), as an alternative method of physical habitat characterisation. Our key findings indicate that SFT mapping accuracy is highly variable, with overall mapping accuracy not exceeding 74%. Results from analysis of similarity (ANOSIM) tests found that strong differences did not exist between all SFT pairs. This leads us to question the suitability of SFTs for characterising physical habitat for river science and management applications. In contrast, the sUAS-SfM approach provided high resolution, spatially continuous, spatially explicit, quantitative measurements of water depth and point cloud roughness at the microscale (spatial scales ≤1m). Such data are acquired rapidly, inexpensively, and provide new opportunities for examining the heterogeneity of physical habitat over a range of spatial and temporal scales. Whilst continued refinement of the sUAS-SfM approach is required, we propose that this method offers an opportunity to move away from broad, mesoscale classifications of physical habitat (spatial scales 10-100m), and towards continuous, quantitative measurements of the continuum of hydraulic and geomorphic conditions which actually exists at the microscale.
Resumo:
Il seguente lavoro di tesi è nato durante un’attività di stage della durata di 7 mesi svolto all’interno della divisione Tea&Coffe di IMA S.p.A., azienda leader mondiale nella produzione di macchine automatiche per il confezionamento di prodotti farmaceutici, cosmetici, alimentari, tè e caffè. Le attività svolte si collocano all’interno di un progetto avviato da IMA per promuovere il passaggio ad un modello di industria necessariamente più evoluta, facendo leva sull’attitudine ad integrare e sviluppare nuove conoscenze e nuove tecnologie interdisciplinari e, allo stesso tempo, di massimizzare la sinergia tra le dimensioni tecnica ed economica, comportando una reale riduzione di sprechi nella filiera produttiva, commerciale ed ambientale. I moderni impianti di produzione devono infatti affrontare una sfida che li vede alla continua ricerca della produttività, ovvero di una produzione che remuneri velocemente e con ampi margini gli investimenti effettuati, della qualità dei prodotti e dei processi di produzione, ovvero della garanzia di soddisfacimento delle aspettative espresse ed inespresse del cliente, e della sicurezza per la salvaguardia della collettività e dell’ambiente. L’obiettivo di questo elaborato è stato quello di effettuare lo studio affidabilistico di una macchina automatica per la produzione di bustine di tè al fine di poterne studiare il suo comportamento al guasto e di elaborare in un secondo momento le politiche manutentive ottimizzate che ne permettano una gestione più efficiente. In questo ambito la macchina è stata scomposta in gruppi e sono stati esaminati tutti i pezzi di ricambio che sono stati richiesti in un arco temporale di durata pari a dieci anni, il fine è quello di poter individuare ed effettuare un’analisi affidabilistica dei componenti critici per poi procedere, attraverso l’uso di piattaforme software quali Weibull++ e Blocksim, col modellarne le distribuzioni statistiche e simulare il funzionamento del sistema nel suo complesso.