841 resultados para proton conductor, crystallinity, self assembly, porous network
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
Utilising supramolecular pi-pi stacking interactions to drive miscibility in two-component polymer blends offers a novel approach to producing materials with unique properties. We report in this paper the preparation of a supramolecular polymer network that exploits this principle. A low molecular weight polydiimide which contains multiple pi-electron-poor receptor sites along its backbone forms homogeneous films with a siloxane polymer that features pi-electron-rich pyrenyl end-groups. Compatibility results from a complexation process that involves chain-folding of the polydiimide to create an optimum binding site for the pi-electron-rich chain ends of the polysiloxane. These complementary pi-electron-rich and -poor receptors exhibit rapid and reversible complexation behaviour in solution, and healable characteristics in the solid state in response to temperature. A mechanism is proposed for this thermoreversible healing behaviour that involves disruption of the intermolecular pi-pi stacking cross-links as the temperature of the supramolecular film is increased. The low T-g siloxane component can then flow and as the temperature of the blend is decreased, pi-pi stacking interactions drive formation of a new network and so lead to good damage-recovery characteristics of the two-component blend.
Resumo:
A series of self-assembling terminally blocked tripeptides (containing coded amino acids) form gels in various aromatic solvents including benzene, toluene, xylenes at low concentrations. However these tripeptides do not form gels in aliphatic hydrocarbons like n-hexane, cyclohexane, n-decane etc. Morphological studies of the dried gel indicate the presence of an entangled fibrous network, which is responsible for gelation. Differential scanning calorimetric (DSC) studies of the gels produced by peptide 1 clearly demonstrates thermoreversible nature of the gel and tripeptide-solvent complex may be produced during gel formation. FT-IR and H-1 NMR studies of the gels demonstrate that an intermolecular hydrogen-bonding network is formed during gelation. Single crystal X-ray diffraction studies for peptides 1, 2 and 3 have been performed to investigate the molecular arrangement that might be responsible for forming the fibrous network of these self-assembling peptide gelators. It has been found that the morph responsible for gelation of peptides 1, 2 and 3 in benzene is somewhat different from that of its xerogel.
Resumo:
The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe-2(mu-pdt)(CO)(4){PPh2(4-py)}(2)] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
It has been shown through a number of experiments that neural networks can be used for a phonetic typewriter. Algorithms can be looked on as producing self-organizing feature maps which correspond to phonemes. In the Chinese language the utterance of a Chinese character consists of a very simple string of Chinese phonemes. With this as a starting point, a neural network feature map for Chinese phonemes can be built up. In this paper, feature map structures for Chinese phonemes are discussed and tested. This research on a Chinese phonetic feature map is important both for Chinese speech recognition and for building a Chinese phonetic typewriter.
Resumo:
Variations on the standard Kohonen feature map can enable an ordering of the map state space by using only a limited subset of the complete input vector. Also it is possible to employ merely a local adaptation procedure to order the map, rather than having to rely on global variables and objectives. Such variations have been included as part of a hybrid learning system (HLS) which has arisen out of a genetic-based classifier system. In the paper a description of the modified feature map is given, which constitutes the HLSs long term memory, and results in the control of a simple maze running task are presented, thereby demonstrating the value of goal related feedback within the overall network.
Resumo:
The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.
Resumo:
A novel extension to Kohonen's self-organising map, called the plastic self organising map (PSOM), is presented. PSOM is unlike any other network because it only has one phase of operation. The PSOM does not go through a training cycle before testing, like the SOM does and its variants. Each pattern is thus treated identically for all time. The algorithm uses a graph structure to represent data and can add or remove neurons to learn dynamic nonstationary pattern sets. The network is tested on a real world radar application and an artificial nonstationary problem.
Resumo:
The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.
Resumo:
A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.
Resumo:
A metal organic framework of Cu-II, tartarate (tar) and 2,2'-bipyridyl (2,2'-bipy)], {[Cu(tar)(2,2'-bipy)]center dot 5H(2)O}(n)} (1) has been synthesized at the mild ambient condition and characterized by single crystal X-ray crystallography. In the compound, the Cu(2,2'-bipy) entities are bridged by tartarate ions which are coordinated to Cu-II by both hydroxyl and monodentate carboxylate oxygen to form a one-dimensional chain. The non-coordinated water molecules form ID water chains by edge-sharing cyclic water pentamers along with dangling water dimers. It shows reversible water expulsion upon heating. The water chains join the ID coordination polymeric chains to a 31) network through hydrogen-bond interactions.
Resumo:
Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.