957 resultados para production studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1 x 1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF1000), we were able to distinguish between: (1) the coastal environments with highest values (EF1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF1000 increased with primary production up to 350 gCm**-2 yr**-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight/m**2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2/m**2/d, and there was a slight net dissolution of CaCO3 (0.8 mmol/m**2/d). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2/m**2/d), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] The low-latitude upwelling regime off the Mauritanian coast in the subtropical NE Atlantic accounts for a significant part of global export production. Although productivity variations in coastal upwelling areas are usually attributed to changes in wind stress and upwelling intensity, productivity dynamics off Mauritania are less straightforward because of the complex atmospheric and hydrographic setting. Here we integrate micropaleontological (diatoms) and geochemical (bulk biogenic sediment components, X-ray fluorescence, and alkenones) proxies to examine on submillennial-to-millennial changes in diatom production that occurred off Mauritania, NW Africa, for the last 25 ka. During the Last Glacial Maximum (LGM, 19.0-23.0 ka B.P.), moderate silicate content of upwelled waters coupled with weakened NE trade winds determined moderate diatom productivity. No significant cooling is observed during the LGM, suggesting that our alkenone-based SST reconstruction represents a local, upwelling-related signal rather than a global insolation related one. Extraordinary increases in diatom and opal concentrations during Heinrich event 1 (H1, 15.5-18.0 ka B.P.) and the Younger Dryas (YD, 13.5-11.5 ka B.P.) are attributed to enhanced upwelling of silica-rich waters and an enlarged upwelling filament, due to more intense NE trade winds. The synchronous increase of CaCO3 and K intensity and the decreased opal and diatoms values mark the occurrence of the Bølling/Allerød (BA, 13.5-15.5 ka B.P.) due to weakened eolian input and more humid conditions on land. Although the high export of diatoms is inextricably linked to upwelling intensity off Mauritania, variability in the nutrient content of the thermocline also plays a decisive role.