969 resultados para processus de Wiener
Resumo:
Suomenlinna on yksi Helsingin suosituimmista matkailu- ja kulttuurinähtävyyksistä. Kustaanmiekan, samoin kuin koko Suomenlinnan luonto on muodostunut perinteisestä suomalaisesta saaristoluonnosta ja vuosisatojen saatossa paikalle tulleista linnoituksien kasvistosta. Saaren vaihtelevien elinympäristöjen johdosta alueen kasvillisuus on hyvin rikasta. Linnoituksien monet kasvilajit ovat tulleet tulokaskasveina eri puolilta Eurooppaa sekä Venäjältä. Suurin osa Suomenlinnan alueesta on kallioketoa ja tämän lisäksi myös valliketoa, joista molemmat kuuluvat suojeltaviin alueisiin. Kustaanmiekan niityillä kasvaa keto- ja paahdelajeja, kuten harvinaista ketonoidanlukkoa (Botrychium lunaria L.) sekä ketoneilikkaa (Dianthus deltoides L.). Tämän tutkimuksen ensisijaisena tarkoituksena oli kartoittaa Kustaanmiekan alueen kesäkauden 2009 ketokasvilajisto ja eri putkilokasvilajien runsaus. Tutkimuksessa selvitettiin myös maaperätekijöiden ja alueen hoitohistorian mahdollista vaikutusta ketokasvilajistoon. Tutkimuksessa kartoitettiin kymmenen eri kedon kasvillisuus Suomenlinnan Kustaanmiekan linnoitusalueella. Kedot sijaitsivat eri puolilla Kustaanmiekkaa, sellaisilla paikoilla, missä ketokasvillisuus oli runsainta. Maastotyöt suoritettiin kesä- ja heinäkuussa laskemalla jokaisen kedon ruutujen putkilokasvien peittävyydet sekä listaamalla ylös myös ruutujen ulkopuoliset kevät- ja loppukesän kukkijat touko- ja elokuussa. Maaperän ominaisuuksien määrittämiseksi otettiin kultakin kedolta pintamaanäytteet elokuussa. Muita tutkittuja muuttujia olivat maapinnan kaltevuus sekä sammalen, karikkeen, paljaan maan, kenttäkasvillisuuden pohjakerros ja kallion osuus tutkimusruuduilla. Ketojen kasvillisuuden keskimääräinen korkeus mitattiin kesä- ja heinäkuussa. Kasvistossa oli selviä eroavaisuuksia ketojen välillä. Kasvilajien määrä vaihteli ketojen kokonaislajimäärän ollessa 40-60 kasvilajia. Yhteensä kedoilta löytyi 120 eri putkilokasvilajia, joista useimmat kukkivat sekä kesä- että heinäkuussa. Ketojen kasvilajimäärä vaihteli yhdellä neliömetrillä 6,3-13,6 kasvilajiin, minkä lisäksi Shannon-Wienerin diversiteetti-indeksi vaihteli 1,4-2,3 arvon välillä. Yleisimpiä lajeja, joita kedoilla tavattiin, olivat muun muassa siankärsämö (Achillea millefolium L.), koiranheinä (Dactylis glomerata L.), juolavehnä (Elymus repens L.) ja hopeahanhikki (Potentilla argentea L.). Alueella kasvoi myös muutamia sotatulokaslajeja kuten harmiota (Berteroa incana L.), ukonpalkoa (Bunias orientalis L.) ja karvahorsmaa (Epilobium hirsutum L.). Maaperätekijöillä, kuten suurella fosforin pitoisuudella ei ollut vaikutusta kasvilajien määrään kedoilla. Vain maan pH ja johtoluku korreloivat positiivisesti ketojen kasvillisuuden korkeuden kanssa. Vaikka tulosten perusteella ketojen hoidolla ei ollut vaikutusta ketojen kasvillisuuden määrään, voidaan kuitenkin olettaa oikeanlaisen hoidon parantavan tyypillisten ketokasvien kilpailukykyä muita niittykasveja kohtaan.
Resumo:
Image filtering techniques have potential applications in biomedical image processing such as image restoration and image enhancement. The potential of traditional filters largely depends on the apriori knowledge about the type of noise corrupting the image. This makes the standard filters to be application specific. For example, the well-known median filter and its variants can remove the salt-and-pepper (or impulse) noise at low noise levels. Each of these methods has its own advantages and disadvantages. In this paper, we have introduced a new finite impulse response (FIR) filter for image restoration where, the filter undergoes a learning procedure. The filter coefficients are adaptively updated based on correlated Hebbian learning. This algorithm exploits the inter pixel correlation in the form of Hebbian learning and hence performs optimal smoothening of the noisy images. The application of the proposed filter on images corrupted with Gaussian noise, results in restorations which are better in quality compared to those restored by average and Wiener filters. The restored image is found to be visually appealing and artifact-free
Resumo:
In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.
Resumo:
A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
A general direct technique of solving a mixed boundary value problem in the theory of diffraction by a semi-infinite plane is presented. Taking account of the correct edge-conditions, the unique solution of the problem is derived, by means of Jones' method in the theory of Wiener-Hopf technique, in the case of incident plane wave. The solution of the half-plane problem is found out in exact form. (The far-field is derived by the method of steepest descent.) It is observed that it is not the Wiener-Hopf technique which really needs any modification but a new technique is certainly required to handle the peculiar type of coupled integral equations which the Wiener-Hopf technique leads to. Eine allgemeine direkte Technik zur Lösung eines gemischten Randwertproblems in der Theorie der Beugung an einer halbunendlichen Ebene wird vorgestellt. Unter Berücksichtigung der korrekten Eckbedingungen wird mit der Methode von Jones aus der Theorie der Wiener-Hopf-Technik die eindeutige Lösung für den Fall der einfallenden ebenen Welle hergeleitet. Die Lösung des Halbebenenproblems wird in exakter Form angegeben. (Das Fernfeld wurde mit der Methode des steilsten Abstiegs bestimmt.) Es wurde bemerkt, daß es nicht die Wiener-Hopf-Technik ist, die wirklich irgend welcher Modifikationen bedurfte. Gewiß aber wird eine neue Technik zur Behandlung des besonderen Typs gekoppelter Integralgleichungen benötigt, auf die die Wiener-Hopf-Technik führt.
Resumo:
Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.
Resumo:
A mixed boundary-valued problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speed. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming one layer of the fluid to be of finite extent and the other of infinite extent. The main problem is solved through a three-part Wiener - Hopf problem of a special type, and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
The bipolar point spread function (PSF) corresponding to the Wiener filter tor correcting linear-motion-blurred pictures is implemented in a noncoherent optical processor. The following two approaches are taken for this implementation: (1) the PSF is modulated and biased so that the resulting function is non-negative and (2) the PSF is split into its positive and sign-reversed negative parts, and these two parts are dealt with separately. The phase problem associated with arriving at the pupil function from these modified PSFs is solved using both analytical and combined analytical-iterative techniques available in the literature. The designed pupil functions are experimentally implemented, and deblurring in a noncoherent processor is demonstrated. The postprocessing required (i.e., demodulation in the first approach to modulating the PSF and intensity subtraction in the second approach) are carried out either in a coherent processor or with the help of a PC-based vision system. The deblurred outputs are presented.
Resumo:
Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are obtained for the temperature distributions on the surface of a cylindrical rod without an insulated core as well as that inside a cylindrical rod with an insulated inner core when the rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different layers of fluid with different cooling abilities. Simple expressions are derived for the values of the sputtering temperatures of the rod at the points of entry into the respective layers, assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent. Both the problems are solved through a three-part Wiener-Hopf problem of special type and the numerical results under certain special circumstances are obtained and presented in tabular forms.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS Decision Feedback equalizer (DFE). We study how well this equalizer tracks the optimal MMSEDFE (Wiener) equalizer. We model the channel by an Autoregressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, we show via some examples that the LMS equalizer moves close to the instantaneous Wiener filter after initial transience. We also compare the LMS equalizer with the instantaneous optimal DFE (the commonly used Wiener filter) designed assuming perfect previous decisions and computed using perfect channel estimate (we will call it as IDFE). We show that the LMS equalizer outperforms the IDFE almost all the time after initial transience.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.
Resumo:
Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.
Resumo:
In this paper, we consider the problem of computing numerical solutions for Ito stochastic differential equations (SDEs). The five-stage Milstein (FSM) methods are constructed for solving SDEs driven by an m-dimensional Wiener process. The FSM methods are fully explicit methods. It is proved that the FSM methods are convergent with strong order 1 for SDEs driven by an m-dimensional Wiener process. The analysis of stability (with multidimensional Wiener process) shows that the mean-square stable regions of the FSM methods are unbounded. The analysis of stability shows that the mean-square stable regions of the methods proposed in this paper are larger than the Milstein method and three-stage Milstein methods.