831 resultados para predator-prey demography
Resumo:
Cetaceans are aquatic mammals that rely primarily on sound for most daily tasks. A compendium of sounds is emitted for orientation, prey detection, and predator avoidance, and to communicate. Communicative sounds are among the most studied Cetacean signals, particularly those referred to as tonal sounds. Because tonal sounds have been studied especially well in social dolphins, it has been assumed these sounds evolved as a social adaptation. However, whistles have been reported in ‘solitary’ species and have been secondarily lost three times in social lineages. Clearly, therefore, it is necessary to examine closely the association, if any, between whistles and sociality instead of merely assuming it. Several hypotheses have been proposed to explain the evolutionary history of Cetacean tonal sounds. The main goal of this dissertation is to cast light on the evolutionary history of tonal sounds by testing these hypotheses by combining comparative phylogenetic and field methods. This dissertation provides the first species-level phylogeny of Cetacea and phylogenetic tests of evolutionary hypotheses of cetacean communicative signals. Tonal sounds evolution is complex in that has likely been shaped by a combination of factors that may influence different aspects of their acoustical structure. At the inter-specific level, these results suggest that only tonal sound minimum frequency is constrained by body size. Group size also influences tonal sound minimum frequency. Species that live in large groups tend to produce higher frequency tonal sounds. The evolutionary history of tonal sounds and sociality may be intertwined, but in a complex manner rejecting simplistic views such as the hypothesis that tonal sounds evolved ‘for’ social communication in dolphins. Levels of social and tonal sound complexity nevertheless correlate indicating the importance of tonal sounds in social communication. At the intraspecific level, tonal sound variation in frequency and temporal parameters may be product of genetic isolation and local levels of underwater noise. This dissertation provides one of the first insights into the evolution of Cetacean tonal sounds in a phylogenetic context, and points out key species where future studies would be valuable to enrich our understanding of other factors also playing a role in tonal sound evolution.
Resumo:
Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.
Resumo:
Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.
Resumo:
Fish stomach content records extracted from the DAPSTOM 4.5 database (held at the UK Centre for Environment, Fisheries and Aquaculture Science - CEFAS). Data collated as part of the EU Euro-Basin project and specifically concerning herring (Clupea harengus), mackerel (Scomber scombrus), blue whiting (Micromesistius poutassou), albacore (Thunnus alalunga) and bluefin tuna (Thunnus thynnus). The data set consist of 20720 records - collected throughout the northeast Atlantic, between 1906 and 2011 - mostly during routine fisheries monitoring research cruises.
Resumo:
The trophic ecology studies issues related to the diet of individuals within a community .The relation between the body size of the predator and the prey size, individual specialization and niche breadth are some of the issues that can be discussed by it .I collected the lizards using pitfall trap, glue and active collecting traps in a fragment of Caatinga. The most common species in this community were Tropidurus hispidus, T. semitaeniatus and Cnemidophorus ocellifer. The visits to the farm also relied on collecting invertebrates at each season to understand how the nutritional resources of lizards were presented in each one of them. I tried to answer some questions : 1) If there was a positive relation between body size of the predator and the size of prey of the community ; 2) If in different seasons the relation of body size of the predator and the maximum and/or minimum size of the prey would be positive ; 3) If species with different foraging strategies have positive relation on the size of the predatorprey relation; 4) If the seasonality would influence on the individual expertise of lizards community and more common species; 5) If the breadth of the niche would be influenced by seasonality ; 6) If more individuals with different morphology between them would present less similar diet. I found that there was indeed a positive relationship between size of prey and predator, but nonexistent related to the minimum size of prey; Among the seasons relative size of predators and prey was different for the maximum and minimum size, but was positively related only to the size of the maximum prey. And comparisons between different foraging strategies had the maximum and minimum line inclination greater than zero and different from each other; individual specialization was not influenced by seasonality and the niche breadth was wider in the dry season only to T. semitaeniatus. At last I didn't find a significant negative relationship between morphological dissimilarity and similarity of diet.
Resumo:
The evolution of reproductive strategies involves a complex calculus of costs and benefits to both parents and offspring. Many marine animals produce embryos packaged in tough egg capsules or gelatinous egg masses attached to benthic surfaces. While these egg structures can protect against environmental stresses, the packaging is energetically costly for parents to produce. In this series of studies, I examined a variety of ecological factors affecting the evolution of benthic development as a life history strategy. I used marine gastropods as my model system because they are incredibly diverse and abundant worldwide, and they exhibit a variety of reproductive and developmental strategies.
The first study examines predation on benthic egg masses. I investigated: 1) behavioral mechanisms of predation when embryos are targeted (rather than the whole egg mass); 2) the specific role of gelatinous matrix in predation. I hypothesized that gelatinous matrix does not facilitate predation. One study system was the sea slug Olea hansineensis, an obligate egg mass predator, feeding on the sea slug Haminoea vesicula. Olea fed intensely and efficiently on individual Haminoea embryos inside egg masses but showed no response to live embryos removed from gel, suggesting that gelatinous matrix enables predation. This may be due to mechanical support of the feeding predator by the matrix. However, Haminoea egg masses outnumber Olea by two orders of magnitude in the field, and each egg mass can contain many tens of thousands of embryos, so predation pressure on individuals is likely not strong. The second system involved the snail Nassarius vibex, a non-obligate egg mass predator, feeding on the polychaete worm Clymenella mucosa. Gel neither inhibits nor promotes embryo predation for Nassarius, but because it cannot target individual embryos inside an egg mass, its feeding is slow and inefficient, and feeding rates in the field are quite low. However, snails that compete with Nassarius for scavenged food have not been seen to eat egg masses in the field, leaving Nassarius free to exploit the resource. Overall, egg mass predation in these two systems likely benefits the predators much more than it negatively affects the prey. Thus, selection for environmentally protective aspects of egg mass production may be much stronger than selection for defense against predation.
In the second study, I examined desiccation resistance in intertidal egg masses made by Haminoea vesicula, which preferentially attaches its flat, ribbon-shaped egg masses to submerged substrata. Egg masses occasionally detach and become stranded on exposed sand at low tide. Unlike adults, the encased embryos cannot avoid desiccation by selectively moving about the habitat, and the egg mass shape has high surface-area-to-volume ratio that should make it prone to drying out. Thus, I hypothesized that the embryos would not survive stranding. I tested this by deploying individual egg masses of two age classes on exposed sand bars for the duration of low tide. After rehydration, embryos midway through development showed higher rates of survival than newly-laid embryos, though for both stages survival rates over 25% were frequently observed. Laboratory desiccation trials showed that >75% survival is possible in an egg mass that has lost 65% of its water weight, and some survival (<25%) was observed even after 83% water weight lost. Although many surviving embryos in both experiments showed damage, these data demonstrate that egg mass stranding is not necessarily fatal to embryos. They may be able to survive a far greater range of conditions than they normally encounter, compensating for their lack of ability to move. Also, desiccation tolerance of embryos may reduce pressure on parents to find optimal laying substrata.
The third study takes a big-picture approach to investigating the evolution of different developmental strategies in cone snails, the largest genus of marine invertebrates. Cone snail species hatch out of their capsules as either swimming larvae or non-dispersing forms, and their developmental mode has direct consequences for biogeographic patterns. Variability in life history strategies among taxa may be influenced by biological, environmental, or phylogenetic factors, or a combination of these. While most prior research has examined these factors singularly, my aim was to investigate the effects of a host of intrinsic, extrinsic, and historical factors on two fundamental aspects of life history: egg size and egg number. I used phylogenetic generalized least-squares regression models to examine relationships between these two egg traits and a variety of hypothesized intrinsic and extrinsic variables. Adult shell morphology and spatial variability in productivity and salinity across a species geographic range had the strongest effects on egg diameter and number of eggs per capsule. Phylogeny had no significant influence. Developmental mode in Conus appears to be influenced mostly by species-level adaptations and niche specificity rather than phylogenetic conservatism. Patterns of egg size and egg number appear to reflect energetic tradeoffs with body size and specific morphologies as well as adaptations to variable environments. Overall, this series of studies highlights the importance of organism-scale biotic and abiotic interactions in evolutionary patterns.
Resumo:
Effective conservation and management of top predators requires a comprehensive understanding of their distributions and of the underlying biological and physical processes that affect these distributions. The Mid-Atlantic Bight shelf break system is a dynamic and productive region where at least 32 species of cetaceans have been recorded through various systematic and opportunistic marine mammal surveys from the 1970s through 2012. My dissertation characterizes the spatial distribution and habitat of cetaceans in the Mid-Atlantic Bight shelf break system by utilizing marine mammal line-transect survey data, synoptic multi-frequency active acoustic data, and fine-scale hydrographic data collected during the 2011 summer Atlantic Marine Assessment Program for Protected Species (AMAPPS) survey. Although studies describing cetacean habitat and distributions have been previously conducted in the Mid-Atlantic Bight, my research specifically focuses on the shelf break region to elucidate both the physical and biological processes that influence cetacean distribution patterns within this cetacean hotspot.
In Chapter One I review biologically important areas for cetaceans in the Atlantic waters of the United States. I describe the study area, the shelf break region of the Mid-Atlantic Bight, in terms of the general oceanography, productivity and biodiversity. According to recent habitat-based cetacean density models, the shelf break region is an area of high cetacean abundance and density, yet little research is directed at understanding the mechanisms that establish this region as a cetacean hotspot.
In Chapter Two I present the basic physical principles of sound in water and describe the methodology used to categorize opportunistically collected multi-frequency active acoustic data using frequency responses techniques. Frequency response classification methods are usually employed in conjunction with net-tow data, but the logistics of the 2011 AMAPPS survey did not allow for appropriate net-tow data to be collected. Biologically meaningful information can be extracted from acoustic scattering regions by comparing the frequency response curves of acoustic regions to theoretical curves of known scattering models. Using the five frequencies on the EK60 system (18, 38, 70, 120, and 200 kHz), three categories of scatterers were defined: fish-like (with swim bladder), nekton-like (e.g., euphausiids), and plankton-like (e.g., copepods). I also employed a multi-frequency acoustic categorization method using three frequencies (18, 38, and 120 kHz) that has been used in the Gulf of Maine and Georges Bank which is based the presence or absence of volume backscatter above a threshold. This method is more objective than the comparison of frequency response curves because it uses an established backscatter value for the threshold. By removing all data below the threshold, only strong scattering information is retained.
In Chapter Three I analyze the distribution of the categorized acoustic regions of interest during the daytime cross shelf transects. Over all transects, plankton-like acoustic regions of interest were detected most frequently, followed by fish-like acoustic regions and then nekton-like acoustic regions. Plankton-like detections were the only significantly different acoustic detections per kilometer, although nekton-like detections were only slightly not significant. Using the threshold categorization method by Jech and Michaels (2006) provides a more conservative and discrete detection of acoustic scatterers and allows me to retrieve backscatter values along transects in areas that have been categorized. This provides continuous data values that can be integrated at discrete spatial increments for wavelet analysis. Wavelet analysis indicates significant spatial scales of interest for fish-like and nekton-like acoustic backscatter range from one to four kilometers and vary among transects.
In Chapter Four I analyze the fine scale distribution of cetaceans in the shelf break system of the Mid-Atlantic Bight using corrected sightings per trackline region, classification trees, multidimensional scaling, and random forest analysis. I describe habitat for common dolphins, Risso’s dolphins and sperm whales. From the distribution of cetacean sightings, patterns of habitat start to emerge: within the shelf break region of the Mid-Atlantic Bight, common dolphins were sighted more prevalently over the shelf while sperm whales were more frequently found in the deep waters offshore and Risso’s dolphins were most prevalent at the shelf break. Multidimensional scaling presents clear environmental separation among common dolphins and Risso’s dolphins and sperm whales. The sperm whale random forest habitat model had the lowest misclassification error (0.30) and the Risso’s dolphin random forest habitat model had the greatest misclassification error (0.37). Shallow water depth (less than 148 meters) was the primary variable selected in the classification model for common dolphin habitat. Distance to surface density fronts and surface temperature fronts were the primary variables selected in the classification models to describe Risso’s dolphin habitat and sperm whale habitat respectively. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.
In Chapter Five I present a summary of the previous chapters and present potential analytical steps to address ecological questions pertaining the dynamic shelf break region. Taken together, the results of my dissertation demonstrate the use of opportunistically collected data in ecosystem studies; emphasize the need to incorporate middle trophic level data and oceanographic features into cetacean habitat models; and emphasize the importance of developing more mechanistic understanding of dynamic ecosystems.
Resumo:
Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
Resumo:
Mercury concentrations ([Hg]) in Arctic food fish often exceed guidelines for human subsistence consumption. Previous research on two food fish species, Arctic char (Salvelinus alpinus) and lake trout (Salvelinus namaycush), indicates that anadromous fish have lower [Hg] than nonanadromous fish, but there have been no intraregional comparisons. Also, no comparisons of [Hg] among anadromous (sea-run), resident (marine access but do not migrate), and landlocked (no marine access) life history types of Arctic char and lake trout have been published. Using intraregional data from 10 lakes in the West Kitikmeot area of Nunavut, Canada, we found that [Hg] varied significantly among species and life history types. Differences among species-life history types were best explained by age-at-size and C:N ratios (indicator of lipid); [Hg] was significantly and negatively related to both. At a standardized fork length of 500 mm, lake trout had significantly higher [Hg] (mean 0.17 µg/g wet wt) than Arctic char (0.09 µg/g). Anadromous and resident Arctic char had significantly lower [Hg] (each 0.04 µg/g) than landlocked Arctic char (0.19 µg/g). Anadromous lake trout had significantly lower [Hg] (0.12 µg/g) than resident lake trout (0.18 µg/g), but no significant difference in [Hg] was seen between landlocked lake trout (0.21 µg/g) and other life history types. Our results are relevant to human health assessments and consumption guidance and will inform models of Hg accumulation in Arctic fish.
Resumo:
Blubber biopsies were collected from 18 adult male walruses from Svalbard, Norway. The biopsies were taken vertically through the skin and the entire blubber layer down to, but not including, the muscle layer. Fatty acid (FA) compositions of inner blubber, outer blubber and dermis of the walruses and of potential prey organisms were determined. The three layers differed significantly from one another in FA composition. Generally, the inner blubber contained more long-chained monounsaturated, saturated and polyunsaturated FAs, while the outer blubber and dermis contained more short-chained monounsaturated FAs. This stratification is similar to what has been observed in other marine mammal species. However, differences between layers were less pronounced than in most other species, possibly because the extremely thick overlying dermis of walruses provides an insulating shield, which affects the FA composition of the outer blubber. The FA composition of the potential prey organisms was different from that of the blubber of the walruses, although more similar to the inner blubber than to the outer blubber or dermis. FA composition in the inner blubber was not significantly correlated with age (assessed by tusk volume), while the FA composition of the outer blubber and dermis were significantly correlated with age.
Resumo:
We performed bird predation experiments (dummy experiments), using artificial prey and bird community data to investigate the importance of predator diversity vs. predator identity in cacao agroforestry landscapes. All sample sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia. After an initial mapping of the study area, we selected 15 smallholder cacao plantations as sites for our exclosure experiments in March 2010. For our predation experiment, we selected 10 (out of 15) study sites and 5 cacao trees per site for the application of artificial prey for birds (dummy caterpillars made of plasticine). Our study trees (numbered from 1 to 5 per site) were randomly chosen and we kept spacing of at least two unmanipulated cacao trees between two study trees to avoid clumped distribution. To quantify both daytime/diurnal predation and night-time/nocturnal predation (e.g. birds vs. bats), we applied 7 caterpillar dummies on all study trees and controlled them for predation marks in the early morning (05:00-06:00 am), in the evening (17:00-18:00 pm) and in the early morning on the next day (completing one survey round). In total, we performed four survey rounds per study site (in June and July 2011). The caterpillar dummies were always applied in the same order and on three different parts of each cacao study tree: One 'control dummy' (located on first branching of the cacao tree); 3 'branch dummies' (located on one main branch coming from first branching; 20-25 cm between single dummies) and 3 'leaf dummies' (3 medium aged cacao trees adjacent to main branch were selected and single dummies placed in the center of each cacao leaf). The different positions were chosen to control for different foraging modes of predators (e.g. branch gleaners versus leaf gleaners). During day- and nighttime surveys, we controlled if the dummy caterpillars were still present in their original position, if they were absent and could not be relocated on the ground or if they were fallen to the ground, but could still be recorded. Eaten dummies were counted as 1 mark usually, except for those dummies, where two or more different kind of arthropods had eaten parts of the dummy (2 marks or more). Other predation marks were added to this number. For each dummy, we counted the total number of different predation marks. We focused on predation marks that could be identified with certainty (based on preliminary observations and/or literature): marks of birds, rodents and snails. Finally, we analysed the relationship of bird predation marks and bird community parameters (abundance vs. diversity), as well as effects of local and landscape management on the avian predation success.
Resumo:
Over the last several decades, human activities have resulted in environmental changes that have increased the number of stressors that can act on a single environment. In Canadian Shield lakes, two recent stressors, the invasion of Bythotrephes longimanus and calcium decline, have been documented. Widespread acidification of hundreds of North American lakes has resulted in the precipitous decline of lake water calcium concentration. Crustacean zooplankton with high calcium demands are likely to be vulnerable to calcium decline, especially <1.5 mg Ca/L, where survival and reproduction rates are reduced. These taxa are also vulnerable to predation by Bythotrephes that has been implicated in the loss of pelagic biodiversity in soft water lakes. Despite laboratory and field studies aimed at understanding the independent impact of these stressors, it is unclear how their co-occurrence will influence community response. Using a combination of data from a large regional lake survey and field experiments, I examined the individual and joint effects of Bythotrephes and calcium decline on native zooplankton community structure. Results demonstrated that much is known about Bythotrephes and our findings of reduced total zooplankton and species richness, due to the loss of Cladocera, are consistent with field surveys and other experimental studies. While we did not detect strong evidence for an effect of calcium on zooplankton using the lowest calcium concentration among invaded lakes (1.2 mg Ca/L), there is evidence that, as lake water calcium concentrations fall <1 mg Ca/L, per capita growth rates of a broad variety of taxa are expected to decline. At the regional scale, negative effects of Bythotrephes and calcium on abundances of small cladocerans and Daphnia pulicaria, respectively, were in agreement with my experimental observations. We also observed significant interactions between Bythotrephes and calcium for a broad variety of taxa. As Bythotrephes continues to spread and invade lakes that are also declining in aqueous calcium, both stressors are likely to amplify negative effects on Cladocera that appear the most vulnerable. Loss of these important zooplankton in response to both Bythotrephes and calcium decline, is likely to lower zooplankton productivity, with potential effects on phytoplankton and higher trophic levels.
Resumo:
The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. Methodology We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. Conclusions Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at the front of the expansion wave during the Neolithic transition in Europe.