998 resultados para potential curves
Resumo:
Great effort is put into developing reliable, predictive, high-throughput, and low-cost screening approaches for the toxicity evaluation of ambient and manufactured nanoparticles (NP). These tests often consider oxidative reactivity, as oxidative stress is a well-documented pathway in particle toxicology. Based on a panel of six carbonaceous and five metal/metal oxide (Me/MeOx) nanoparticles, we: (i) compared the specifications (linearity, detection limits, repeatability) of three acellular reactivity tests using either dithiothreitol (DTT assay), dichlorofluorescein (DCFH assay), or ascorbic acid (AA-assay) as the reducing agent; and (ii) evaluated which physicochemical properties were important for explaining the observed reactivity. The selected AA assay was found to be neither sensitive nor robust enough to be retained. For the other tests, the surface properties of carbonaceous NP were of utmost importance for explaining their reactivity. In particular, the presence of "strongly reducing" surface functions explained most of its DCFH reactivity and a large part of its DTT reactivity. For the selected Me/MeOx, a different picture emerged. Whereas all particles were able to oxidize DCFH, dissolution and complexation processes could additionally influence the measured reactivity, as observed using the DTT assay. This study suggests that a combination of the DTT and DCFH assays provides complementary information relative to the quantification of the oxidative capacity of NP.
Resumo:
BACKGROUND: Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations are associated with failure of prophylaxis with sulfa drugs. This retrospective study sought to better understand the geographical variation in the prevalence of these mutations. METHODS: DHPS polymorphisms in 394 clinical specimens from immunosuppressed patients who received a diagnosis of P. jirovecii pneumonia and who were hospitalized in 3 European cities were examined using polymerase chain reaction (PCR) single-strand conformation polymorphism. Demographic and clinical characteristics were obtained from patients' medical charts. RESULTS: Of the 394 patients, 79 (20%) were infected with a P. jirovecii strain harboring one or both of the previously reported DHPS mutations. The prevalence of DHPS mutations was significantly higher in Lyon than in Switzerland (33.0% vs 7.5%; P < .001). The proportion of patients with no evidence of sulfa exposure who harbored a mutant P. jirovecii DHPS genotype was significantly higher in Lyon than in Switzerland (29.7% vs 3.0%; P < .001). During the study period in Lyon, in contrast to the Swiss hospitals, measures to prevent dissemination of P. jirovecii from patients with P. jirovecii pneumonia were generally not implemented, and most patients received suboptimal prophylaxis, the failure of which was strictly associated with mutated P. jirovecii. Thus, nosocomial interhuman transmission of mutated strains directly or indirectly from other individuals in whom selection of mutants occurred may explain the high proportion of mutations without sulfa exposure in Lyon. CONCLUSIONS: Interhuman transmission of P. jirovecii, rather than selection pressure by sulfa prophylaxis, may play a predominant role in the geographical variation in the prevalence in the P. jirovecii DHPS mutations.
Resumo:
BACKGROUND: Conserved non-coding sequences in the human genome are approximately tenfold more abundant than known genes, and have been hypothesized to mark the locations of cis-regulatory elements. However, the global contribution of conserved non-coding sequences to the transcriptional regulation of human genes is currently unknown. Deeply conserved elements shared between humans and teleost fish predominantly flank genes active during morphogenesis and are enriched for positive transcriptional regulatory elements. However, such deeply conserved elements account for <1% of the conserved non-coding sequences in the human genome, which are predominantly mammalian. RESULTS: We explored the regulatory potential of a large sample of these 'common' conserved non-coding sequences using a variety of classic assays, including chromatin remodeling, and enhancer/repressor and promoter activity. When tested across diverse human model cell types, we find that the fraction of experimentally active conserved non-coding sequences within any given cell type is low (approximately 5%), and that this proportion increases only modestly when considered collectively across cell types. CONCLUSIONS: The results suggest that classic assays of cis-regulatory potential are unlikely to expose the functional potential of the substantial majority of mammalian conserved non-coding sequences in the human genome.
Resumo:
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which - apposition of the dorsal and ventral wing sheets during metamorphosis - is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Resumo:
This paper analyzes the relationship between ethnic fractionalization, polarization, and conflict. In recent years many authors have found empirical evidence that ethnic fractionalization has a negative effect on growth. One mechanism that can explain this nexus is the effect of ethnic heterogeneity on rent-seeking activities and the increase in potential conflict, which is negative for investment. However the empirical evidence supporting the effect of ethnic fractionalization on the incidence of civil conflicts is very weak. Although ethnic fractionalization may be important for growth, we argue that the channel is not through an increase in potential ethnic conflict. We discuss the appropriateness of indices of polarization to capture conflictive dimensions. We develop a new measure of ethnic heterogeneity that satisfies the basic properties associated with the concept of polarization. The empirical section shows that this index of ethnic polarization is a significant variable in the explanation of the incidence of civil wars. This result is robust to the presence of other indicators of ethnic heterogeneity, other sources of data for the construction of the index, and other data structures.
Resumo:
Objective: To assess the level of hemoglobin-Hb during pregnancy before and after fortification of flours with iron. Method: A cross-sectional study with data from 12,119 pregnant women attended at a public prenatal from five macro regions of Brazil. The sample was divided into two groups: Before-fortification (birth before June/2004) and After-fortification (last menstruation after June/2005). Hb curves were compared with national and international references. Polynomial regression models were built, with a significance level of 5%. Results: Although the higher levels of Hb in all gestational months after-fortification, the polynomial regression did not show the fortification effect (p=0.3). Curves in the two groups were above the references in the first trimester, with following decrease and stabilization at the end of pregnancy. Conclusion: Although the fortification effect was not confirmed, the study presents variation of Hb levels during pregnancy, which is important for assistencial practice and evaluation of public policies.
Resumo:
OBJECTIVES: (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. METHODS: Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. RESULTS: There was a significant interaction between material and load as well as between load and brushing time (p<0.0001). The microhybrid and hybrid materials demonstrated more surface deterioration with higher loads, whereas with the microfilled resins Heliomolar and Adoro it was vice versa. For ceramic materials, no or little deterioration was observed over time and independent of the load. The ceramic materials and 3 of the composite materials (roughness) showed no further deterioration after 5h of toothbrushing. Mean surface gloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. SIGNIFICANCE: The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be quickly assessed by measuring surface gloss. For this purpose, a brushing time of 10h (=72,000 strokes) is needed. In further comparative studies, specimens of different materials should be tested in one series to estimate the true variability.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, using the standard tools of forensic DNA profiling (i.e., STR markers), the profile of the minor contributor in mixed DNA stains cannot be successfully detected if its quantitative share of DNA is less than 10% of the mixed trace. This is due to the fact that the major contributor's profile "masks" that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP) linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed [1]. These novel markers are called DIP-STR markers. This paper compares, from a statistical and forensic perspective, the potential usefulness of these novel DIP-STR markers (i) with traditional STR markers in cases of moderately unbalanced mixtures, and (ii) with Y-STR markers in cases of female-male mixtures. This is done through a comparison of the distribution of 100,000 likelihood ratio values obtained using each method on simulated mixtures. This procedure is performed assuming, in turn, the prosecution's and the defence's point of view.
Resumo:
BACKGROUND: Potential drug-drug interactions (PDDIs) might expand with new combination antiretroviral therapies (ART) and polypharmacy related to increasing age and comorbidities. We investigated the prevalence of comedications and PDDIs within a large HIV cohort, and their effect on ART efficacy and tolerability. METHODS: All medications were prospectively recorded in 1,497 ART-treated patients and screened for PDDIs using a customized version of the Liverpool drug interactions database. RESULTS: Overall, 68% (1,013/1,497) of patients had a comedication and 40% (599/1,497) had > or = 1 PDDI. Among patients with comedication, 2% (21/1,013) had red-flag interactions (contraindicated) and 59% (597/1,013) had orange-flag interactions (potential dose adjustment and/or close monitoring required). The latter involved mainly central nervous system drugs (49%), cardiovascular drugs (34%) and methadone (19%). In the multivariate analysis, factors associated with having a comedication were advanced age, female gender, obesity and HCV infection. Independent risk factors for PDDIs were regimens combining protease inhibitors and non-nucleoside reverse transcriptase inhibitors (odds ratio [OR] 3.06, 95% confidence interval [CI] 1.44-6.48), > or = 2 comedications (OR 1.89, 95% CI 1.32-2.70), current illicit drug use (OR 2.00, 95% CI 1.29-3.10) and patients with HCV infection (OR 1.74, 95% CI 1.19-2.56). Viral response was similar in patients with and without PDDIs (84.5% versus 86.4%; P=0.386). During follow-up, ART was modified in 134 patients with comedication regardless of the presence of PDDIs (P=0.524). CONCLUSIONS: PDDIs increase with complex ART and comorbidities. No adverse effect was noted on ART efficacy or tolerability; however, most PDDIs affected comedication but were manageable through dose adjustment or monitoring.
Resumo:
Background: Malaria has come near eradication at archipelago of Cabo Verde in 1970. Infections are now only observed in Santiago, where outbreaks occur. In these islands, malaria is considered by the international community as being of limited risk and, therefore, no prophylaxis is recommended. Since the understanding of factors that determine malaria outbreaks are crucial for controlling the disease, the present study aimed to investigate if the malaria infections observed in Santiago Island are maintained in isolated foci and in asymptomatic individuals.
Resumo:
BACKGROUND: The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. FINDINGS: Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. CONCLUSIONS: These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.