943 resultados para plasma membrane molecular organization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients' fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade, the discovery that astrocytes possess a nonelectrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. Here by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the spatiotemporal characteristics of stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes. We performed the analysis at both the whole-cell and single-vesicle levels providing the first system for comparing exo-endocytic processes in astrocytes with those in neurons. Both the time course and modalities of secretion in astrocytes present more similarities to neurons then previously expected. We found that 1. the G-protein-coupled receptor (GPCR)-evoked exocytosis reached the maximum on a ms time scale and that 2. ER tubuli formed sub-micrometer domains beneath the plasma membrane in close proximity to exocytic vesicles, where fusion events were spatiotemporally correlated with fast Ca21 events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DCs) can release microvesicles, but the latter's numbers, size, and fate are unclear. Fluorescently labeled DCs were visualized by laser-scanning microscopy. Using a Surpass algorithm, we were able to identify and quantify per cell several hundred microvesicles released from the surface of stimulated DCs. We show that most of these microvesicles are not of endocytic origin but result from budding of the plasma membrane, hence their name, exovesicle. Using a double vital staining, we show that exovesicles isolated from activated DCs can fuse with the membrane of resting DCs, thereby allowing them to present alloantigens to lymphocytes. We concluded that, within a few hours from their release, exovesicles may amplify local or distant adaptive immunological response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that astrocytes possess a nonelectrical form of excitability (calcium excitability) that leads to the release of chemical transmitters, an activity called gliotransmission, indicates that these cells may have additional important roles in brain function. Elucidating the stimulussecretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. We have recently discovered the existence in astrocytes of functional sub-membrane microdomains of calcium release from the internal stores in response to mGluR5 activation (Marchaland et al., J of Neurosci., 2008). Such sub-plasma membrane calcium microdomains control exocytosis of astrocytic glutamate signaling to neurons. Homer proteins are scaffold proteins controlling calcium signaling in different cellular microdomains, including dendritic spines in neurons (Sala et al., J of Neurosci., 2005). Thus, similarly to dendritic pines, Homer1 could be implicated in the coupling between astrocytic mGluR5 and IP3Rs on the ER. Here, by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we investigated the involvement of Homer1 proteins in the calcium dependent stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chez les mammifères, les phéromones sont des molécules clés dans la régulation des comportements sociaux au sein d'une espèce. Chez la souris, la détection de ces molécules se fait dans l'organe voméronasal (VNO] et implique le canal TRPC2 afin de dépolariser les neurones. Des différences de comportement entre des souris Trpc2-/- et des souris sans VNO suggèrent l'implication d'une autre protéine effectrice dans la voie de signalisation des phéromones. L'hypothèse étant que cette protéine formerait un canal hétéromérique avec TRPC2. CNGA4 est une protéine sans fonction connue dans le VNO des rongeurs. Elle appartient à la famille des protéines CNG qui joue un rôle important dans différentes voies de signalisation comme la vision ou l'olfaction. Etant donné sa présence dans le VNO, son rôle inconnu dans cet organe et son rôle important dans de nombreuses voies de signalisation, nous avons décidé d'étudier CNGA4 afin de connaître sa localisation, ses propriétés ou encore sa structure. Nous avons découvert que CNGA4 est exprimée dans les axons, les neurones immatures ainsi que sur les microvillosités des neurones de VNO. A l'aide de souris portant une version non fonctionnelle de CNGA4, nous avons pu montrer que cette protéine joue un rôle majeur dans la voie de signalisation des phéromones. Ainsi, les neurones du VNO portant une version non fonctionnelle de CNGA4 répondent moins fréquemment aux phéromones et par conséquent les phéromones activent également moins de neurones dans le bulbe olfactif accessoire, premier relais du VNO avec le cortex. Cette détection défaillante se traduit par une absence d'agressivité des souris mutantes ainsi que par une incapacité de ces souris à discriminer le sexe de leur conspécifique. Etant donné les propriétés similaires de CNGA4 et de TRPC2, nous avons supposé que les deux protéines pourraient interagir. Cette hypothèse a été confortée par l'observation que CNGA4 n'est plus exprimée dans les microvillosités du VNO des souris Trpc2-/-. A l'aide d'expériences d'expression hétérologue, nous avons pu observer que les deux protéines interagissent et forment un canal activé par un analogue du diacylglycérol suggérant que ce canal est fonctionnel. Ces résultats indiquent que CNGA4 formerait un canal hétéromérique avec TRPC2 et aurait dans ce canal une fonction modulatrice. Des expériences complémentaires sont nécessaires afin de connaître le rôle de chacune de ces protéines dans la voie de signalisation des phéromones. Sensing pheromones: a role for the CNGA4 and TRPC2 proteins Mammalian pheromones are key chemical signals in the regulation of intraspecies social behaviors. Detection of these pheromones, which takes place in sensory neurons of the vomeronasal organ (VNO), implies the activation of the transient receptor potential canonical channel 2 (TRPC2) as the final effector. Interestingly, discrepancies between Trpc2 /- mice and mice lacking a VNO suggest the implication of another protein in the pheromone signaling pathway. This protein could either form a heteromeric channel with TRPC2 or a separate homomeric ion channel. The cyclic nucleotide-gated channel subunit CNGA4 is also expressed in the rodent VNO but its role and properties in this organ remain unknown. CNGA4 belongs to the CNG channel family which is playing an important role in different sensory pathways such as in light and odorant detection. We thus decided to study the role of the CNGA4 protein in the mouse VNO. We found CNGA4 to be expressed in axons, dendrites and in the sensory microvilli. Using mice bearing a non-functional form of CNGA4 we further demonstrated the importance of the CNGA4 protein for the pheromone signaling pathway as neurons from mutant mice were responding less frequently to chemosensory cues. As a result, mutant mice displayed a non-aggressive behavior and an impaired sexual discrimination ability. Based on the CNGA4 localization and its role in the pheromone signaling pathway we hypothesized a possible interaction between CNGA4 and TRPC2 forming a heteromeric channel. First evidences for this interaction came from the absence of CNGA4 expression in the sensory microvilli of Trpc2-/- mice. Second, using transfected HEK cells as an expression system we could observe that CNGA4 and TRPC2 interact and translocate to the plasma membrane. Perfusion of a DAG analogue on co-transfected HEK cells resulted in a strong calcium entry suggesting that the two proteins form a functional channel. These results might suggest a modulatory role for CNGA4 in a heteromeric TRPC2+CNGA4 ion channel. Further experiments will give more insights on the combined role of these transduction ion channels in pheromone detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34(+) stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In adipocytes and muscle cells, the GLUT4 glucose transporter isoform is present in intracellular vesicles which continuously recycle between an intracytoplasmic location and the plasma membrane. It is not clear whether the GLUT4-vesicles represent a specific kind of vesicle or resemble typical secretory granules or synaptic-like microvesicles. To approach this question, we expressed GLUT4 in the beta cell line RINm5F and determined its intracellular localization by subcellular fractionation and by immunofluorescence and immunoelectron microscopy. GLUT4 was not found in insulin granules but was associated with a subpopulation of smooth-surface vesicles present in the trans-Golgi region and in vesicular structures adjacent to the plasma membrane. In the trans-Golgi region, GLUT4 did not colocalize with synaptophysin or TGN38. Incubation of the cells with horseradish peroxidase (HRP) led to colocalization of HRP and GLUT4 in some endosomal structures adjacent to the plasma membrane and in occasional trans-Golgi region vesicles. When cells were incubated in the presence of Bafilomycin A, analysis by confocal microscopy revealed GLUT4 in numerous large spots present throughout the cytoplasm, many of which costained for TGN38 and synaptophysin. By immunoelectron microscopy, numerous endosomes were observed which stained strongly for GLUT4. Together our data demonstrate that ectopic expression of GLUT4 in insulinoma cells reveals the presence of a subset of vesicular structures distinct from synaptic-like vesicles and insulin secretory granules. Furthermore, they indicate that GLUT4 constitutively recycles between the plasma membrane and its intracellular location by an endocytic route also taken by TGN38 and synaptophysin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In plants, the heat stress response (HSR) is highly conserved and involves multiple pathways, regulatory networks and cellular compartments. At least four putative sensors have recently been proposed to trigger the HSR. They include a plasma membrane channel that initiates an inward calcium flux, a histone sensor in the nucleus, and two unfolded protein sensors in the endoplasmic reticulum and the cytosol. Each of these putative sensors is thought to activate a similar set of HSR genes leading to enhanced thermotolerance, but the relationship between the different pathways and their hierarchical order is unclear. In this review, we explore the possible involvement of different thermosensors in the plant response to warming and heat stress.