994 resultados para optimum temperature
Resumo:
The optimal design of a heat exchanger system is based on given model parameters together with given standard ranges for machine design variables. The goals set for minimizing the Life Cycle Cost (LCC) function which represents the price of the saved energy, for maximizing the momentary heat recovery output with given constraints satisfied and taking into account the uncertainty in the models were successfully done. Nondominated Sorting Genetic Algorithm II (NSGA-II) for the design optimization of a system is presented and implemented inMatlab environment. Markov ChainMonte Carlo (MCMC) methods are also used to take into account the uncertainty in themodels. Results show that the price of saved energy can be optimized. A wet heat exchanger is found to be more efficient and beneficial than a dry heat exchanger even though its construction is expensive (160 EUR/m2) compared to the construction of a dry heat exchanger (50 EUR/m2). It has been found that the longer lifetime weights higher CAPEX and lower OPEX and vice versa, and the effect of the uncertainty in the models has been identified in a simplified case of minimizing the area of a dry heat exchanger.
Resumo:
The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius.
Resumo:
Most ecosystems undergo substantial variation over the seasons, ranging from changes in abiotic features, such as temperature, light and precipitation, to changes in species abundance and composition. How seasonality varies along latitudinal gradients is not well known in freshwater ecosystems, despite being very important in predicting the effects of climate change and in helping to advance ecological understanding. Stream temperature is often well correlated with air temperature and influences many ecosystem features such as growth and metabolism of most aquatic organisms. We evaluated the degree of seasonality in ten river mouths along a latitudinal gradient for a set of variables, ranging from air and water temperatures, to physical and chemical properties of water and growth of an invasive fish species (eastern mosquitofish, Gambusia holbrooki ). Our results show that although most of the variation in air temperature was explained by latitude and season, this was not the case for water features, including temperature, in lowland Mediterranean streams, which depended less on season and much more on local factors. Similarly, although there was evidence of latitude-dependent seasonality in fish growth, the relationship was nonlinear and weak and the significant latitudinal differences in growth rates observed during winter were compensated later in the year and did not result in overall differences in size and growth. Our results suggest that although latitudinal differences in air temperature cascade through properties of freshwater ecosystems, local factors and complex interactions often override the water temperature variation with latitude and might therefore hinder projections of species distribution models and effects of climate change
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes
Resumo:
This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.
Resumo:
Condition-specific competition is widespread in nature. Species inhabiting heterogeneous environments tend to differ in competitive abilities depending on environmental stressors. Interactions between these factors can allow coexistence of competing species, which may be particularly important between invasive and native species. Here, we examine the effects of temperature on competitiveinteractions between invasive mosquitofish, Gambusia holbrooki, and an endemic Iberian toothcarp, Aphanius iberus. We compare the tendency to approach heterospecifics and food capture rates between these two species, and examine differences between sexes and species in aggressive interactions, at three different temperatures (19, 24 and 29uC) in three laboratory experiments. Mosquitofish exhibit much more aggression than toothcarp. We show that mosquitofish have the capacity to competitively displace toothcarp through interference competition and this outcome is more likely at higher temperatures. We also show a reversal in the competitive hierarchy through reduced food capture rate by mosquitofish at lower temperatures and suggest that these two types of competition may act synergistically to deprive toothcarp of food at higher temperatures. Males of both species carry out more overtly aggressive acts than females, which is probably related to the marked sexual dimorphism and associated mating systems of these two species. Mosquitofish may thus impact heavily on toothcarp, and competition from mosquitofish, especially in warmer summer months, may lead to changes in abundance of the native species and displacement to non-preferred habitats. Globally increasing temperatures mean that highly invasive, warm-water mosquitofish may be able to colonize environments from which they are currently excluded through reduced physiological tolerance to low temperatures. Research into the effects of temperature on interactions between native and invasive species is thus of fundamental importance
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.
Resumo:
A generalized off-shell unitarity relation for the two-body scattering T matrix in a many-body medium at finite temperature is derived, through a consistent real-time perturbation expansion by means of Feynman diagrams. We comment on perturbation schemes at finite temperature in connection with an erroneous formulation of the Dyson equation in a paper recently published.
Resumo:
To predict the capacity of the structure or the point which is followed by instability, calculation of the critical crack size is important. Structures usually contain several cracks but not necessarily all of these cracks lead to failure or reach the critical size. So, defining the harmful cracks or the crack size which is the most leading one to failure provides criteria for structure’s capacity at elevated temperature. The scope of this thesis was to calculate fracture parameters like stress intensity factor, the J integral and plastic and ultimate capacity of the structure to estimate critical crack size for this specific structure. Several three dimensional (3D) simulations using finite element method by Ansys program and boundary element method by Frank 3D program were carried out to calculate fracture parameters and results with the aid of laboratory tests (loaddisplacement curve, the J resistance curve and yield or ultimate stress) leaded to extract critical size of the crack. Two types of the fracture which is usually affected by temperature, Elastic and Elasti-Plastic fractures were simulated by performing several linear elastic and nonlinear elastic analyses. Geometry details of the weldment; flank angle and toe radius were also studied independently to estimate the location of crack initiation and simulate stress field in early stages of crack extension in structure. In this work also overview of the structure’s capacity in room temperature (20 ºC) was studied. Comparison of the results in different temperature (20 ºC and -40 ºC) provides a threshold of the structure’s behavior within the defined range.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
Actualment a Catalunya existeixen zones amb importants limitacions per l’aplicació de purins al sòl, pel que és imprescindible trobar alternatives de gestió i tractament que permetin l’aprofitament adequat dels recursos continguts a les dejeccions ramaderes sense afectar el medi. La digestió anaeròbia és una de les tècniques utilitzades en el tractament de les dejeccions ramaderes. L’efluent líquid que s’obté d’aquest tractament no modifica el contingut de nitrogen i fòsfor i per tant ha de ser gestionat correctament. L’objectiu general d’aquest projecte és avaluar la precipitació d’estruvita (sal de magnesi, amoni i fosfat) com una alternativa de gestió de l’efluent líquid d’una planta de digestió anaeròbia i compostatge que tracta dejeccions ramaderes conjuntament amb altres residus orgànics. S’han avaluat els efectes dels diferents paràmetres operacionals en la formació d’estruvita (pH, temperatura, velocitat d’agitació, alcalinitat), mitjançant assaigs en discontinu amb solució sintètica. A continuació s’ha procedit a obtenir estruvita a partir de la fracció líquida digerida de purí (FLD), en assaigs en discontinu per estudiar l’efecte del contingut de matèria orgànica i sòlids Totals (ST), així com el contingut en fosfats i el pH de reacció. Finalment, s’han optimitzat els paràmetres de procés en continu, mitjançant la posada en marxa d’un reactor a escala de laboratori i estudi de l’efecte de la velocitat d’agitació i de la introducció del stripping de CO2, tant amb solució sintètica com amb la fracció líquida digerida del purí. Dels resultats obtinguts es pot concloure que els factors que tenen una major influència en el procés d’obtenció d’estruvita són el pH (el pH òptim es situa al voltant de 9), i la presència de matèria orgànica i sòlids ens suspensió, que interfereix de forma quantitativa i qualitativa en la formació de l’estruvita. En el procés en continu s’ha aconseguit reduccions d’un 84% i 98% d’amoni i fòsfor respectivament, obtenintse estruvita que pot ser utilitzada com a fertilitzant d’alliberació lenta. Es pot concloure que la precipitació d’estruvita és una bona alternativa per millorar la gestió de les dejeccions ramaderes alhora que permet recuperar nutrients i tancar cicles. La combinació amb un tractament previ que elimini la matèria orgànica, com podria ser la digestió anaeròbia, i una separació de fases, per eliminar els sòlids en suspensió, es presenta com una configuració amb molts avantatges.
Resumo:
Harmane has been proposed for the treatment of epilepsy, AIDS and leshmaniosis. Its room-temperature phosphorescence was induced using either AgNO3 or TlNO3, enabling absolute limits of detection of 0.12 and 2.4 ng respectively, with linear dynamic ranges extending up to 456 ng (AgNO3) and 911 ng (TlNO3). Relative standard deviations around 3% were observed for substrates containing 46 ng of harmane. Such sensitivity and precision are needed because harmane intake must be strictly controlled to achieve proper therapeutic response. Interference studies were performed using thalidomide, reserpine and yohimbine. Recovery of 104±6% was achieved using solid surface room-temperature phosphorimetry. The result was comparable to the one obtained by micellar electrokinetic chromatography.