834 resultados para optical parametric generation
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
An online survey was conducted to investigate the views and experiences of Australian traffic and transport professionals about practical problems and issues in terms of trip generation and trip chaining for use in Transport Impact Assessment (TIA). Findings from this survey revealed that there is a shortage of appropriate data related to trip generation estimation for use in TIAs in Australia. Establishing a National Trip Generation Database (NTGD) with a centralised responsible organisation for collecting and publishing trip generation data based on federal and state governments’ contribution was found the most accepted solution for resolving this shortage as well as providing national standards and guidelines associated with trip generation definitions, data collection methodology, and TIA preparation process based on updated research. Finally, the study recognised the importance of the trip chaining effects on trip generation estimation and identified most prevalent land uses subject to trip chaining in terms of TIA.
Resumo:
Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.
Resumo:
The majority of current first year university students belong to Generation Y. Consequently, research suggests that, in order to more effectively engage them, their particular learning preferences should be acknowledged in the organisation of their learning environments and in the support provided. These preferences are reflected in the Torts Student Peer Mentor Program, which, as part of the undergraduate law degree at the Queensland University of Technology, utilises active learning, structured sessions and teamwork to supplement student understanding of the substantive law of Torts with the development of life-long skills. This article outlines the Program, and its relevance to the learning styles and experiences of Generation Y first year law students transitioning to university, in order to investigate student perceptions of its effectiveness – both generally and, more specifically, in terms of the Program’s capacity to assist students to develop academic and work-related skills.
Resumo:
We consider Cooperative Intrusion Detection System (CIDS) which is a distributed AIS-based (Artificial Immune System) IDS where nodes collaborate over a peer-to-peer overlay network. The AIS uses the negative selection algorithm for the selection of detectors (e.g., vectors of features such as CPU utilization, memory usage and network activity). For better detection performance, selection of all possible detectors for a node is desirable but it may not be feasible due to storage and computational overheads. Limiting the number of detectors on the other hand comes with the danger of missing attacks. We present a scheme for the controlled and decentralized division of detector sets where each IDS is assigned to a region of the feature space. We investigate the trade-off between scalability and robustness of detector sets. We address the problem of self-organization in CIDS so that each node generates a distinct set of the detectors to maximize the coverage of the feature space while pairs of nodes exchange their detector sets to provide a controlled level of redundancy. Our contribution is twofold. First, we use Symmetric Balanced Incomplete Block Design, Generalized Quadrangles and Ramanujan Expander Graph based deterministic techniques from combinatorial design theory and graph theory to decide how many and which detectors are exchanged between which pair of IDS nodes. Second, we use a classical epidemic model (SIR model) to show how properties from deterministic techniques can help us to reduce the attack spread rate.
Resumo:
Parabolic Trough Concentrators (PTC) are the most proven solar collectors for solar thermal power plants, and are suitable for concentrating photovoltaic (CPV) applications. PV cells are sensitive to spatial uniformity of incident light and the cell operating temperature. This requires the design of CPV-PTCs to be optimised both optically and thermally. Optical modelling can be performed using Monte Carlo Ray Tracing (MCRT), with conjugate heat transfer (CHT) modelling using the computational fluid dynamics (CFD) to analyse the overall designs. This paper develops and evaluates a CHT simulation for a concentrating solar thermal PTC collector. It uses the ray tracing work by Cheng et al. (2010) and thermal performance data for LS-2 parabolic trough used in the SEGS III-VII plants from Dudley et al. (1994). This is a preliminary step to developing models to compare heat transfer performances of faceted absorbers for concentrating photovoltaic (CPV) applications. Reasonable agreement between the simulation results and the experimental data confirms the reliability of the numerical model. The model explores different physical issues as well as computational issues for this particular kind of system modeling. The physical issues include the resultant non-uniformity of the boundary heat flux profile and the temperature profile around the tube, and uneven heating of the HTF. The numerical issues include, most importantly, the design of the computational domain/s, and the solution techniques of the turbulence quantities and the near-wall physics. This simulation confirmed that optical simulation and the computational CHT simulation of the collector can be accomplished independently.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
SYN (Student Youth Network) is a media organisation run by people between the ages of 12 and 26. In this ‘coming of age story’, Ellie Rennie follows the SYNners as they build Australia’s most unusual media empire against enormous odds. Over the course of the book, social networking becomes the most popular use of the internet and traditional media institutions are forced to acknowledge the rise of amateur content. In response, SYN rethinks its approach to the online environment, kills its print publication, deals with the introduction of digital broadcasting and teaches schoolteachers about a new kind of literacy. In just two years dozens of careers are launched, the SYN radio audience doubles and they get told off for swearing. Life of SYN takes on the big issues of the media through the story of a small media organisation. This humorous and insightful book describes a media environment in flux, where audiences and producers express their freedom in unruly and contradictory ways. Life of SYN gives structure to the new media world without curtailing its inventiveness and possibility. Life of SYN combines story with media theory, encompassing: digital literacy and media participation; the future of community media; youth media and media industries.
Resumo:
This article reports on the design and implementation of a Computer-Aided Die Design System (CADDS) for sheet-metal blanks. The system is designed by considering several factors, such as the complexity of blank geometry, reduction in scrap material, production requirements, availability of press equipment and standard parts, punch profile complexity, and tool elements manufacturing method. The interaction among these parameters and how they affect designers' decision patterns is described. The system is implemented by interfacing AutoCAD with the higher level languages FORTRAN 77 and AutoLISP. A database of standard die elements is created by parametric programming, which is an enhanced feature of AutoCAD. The greatest advantage achieved by the system is the rapid generation of the most efficient strip and die layouts, including information about the tool configuration.
Resumo:
Parametric and generative modelling methods are ways in which computer models are made more flexible, and of formalising domain-specific knowledge. At present, no open standard exists for the interchange of parametric and generative information. The Industry Foundation Classes (IFC) which are an open standard for interoperability in building information models is presented as the base for an open standard in parametric modelling. The advantage of allowing parametric and generative representations are that the early design process can allow for more iteration and changes can be implemented quicker than with traditional models. This paper begins with a formal definition of what constitutes to be parametric and generative modelling methods and then proceeds to describe an open standard in which the interchange of components could be implemented. As an illustrative example of generative design, Frazer’s ‘Reptiles’ project from 1968 is reinterpreted.
Resumo:
Taka ‘i fonua mahu is a Tongan proverb, which means: "Going about or living in a fruitful land". This thesis analyses the experiences and impacts on migration on being Tongan, particularly Tongan youth in an adopted fruitful land, South East Queensland. The thesis argues that being Tongan in Tonga, has new meaning in the diaspora because of remittances, job prospects, educational opportunity, adapting to a multicultural society, and social justice. These issues are revealed by comparisons made with the experiences of the first generation Tongan migrants, and second generation Tongan migrants, as well as those in New Zealand and America. It argues that the Church, the family and kainga (extended family) impact on the anga fakatonga (Tongan way) and the essence of community as experienced by the first and second generation Tongan migrants. The framework for this analysis is a study of transnationalism, and being Tongan as it is maintained and changed in the diaspora.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molec- ular biology, allowing routine clinical sequencing. NGS data consists of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans, with some strains exhibiting antibiotic resistance. Here we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from other pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.