800 resultados para nucleotides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of transient kinetic and equilibrium titration methods has been used to show that both primer/template and nucleotide binding to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase are two-step processes. In both cases, after initial formation of relatively weakly bound states, isomerization reactions lead to tightly bound states. In the case of deoxynucleotide binding to the reverse transcriptase-primer/template complex, the second step in the interaction is rate-limiting in the overall reaction during processive polymerization. Discrimination against incorrect nucleotides occurs both in the initial weak binding and in the second step but is purely kinetic in the second step (as opposed to thermodynamic in the first step). Nonnucleoside inhibitors have a relatively small effect on nucleotide-binding steps (overall affinity is reduced by a factor of ca. 10), while the affinity of the primer/template duplex is increased by at least a factor of 10. The major effect of nonnucleoside inhibitors is on the chemical step (nucleotide transfer).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type IIFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16INK4A) and CDKN2B (p15INK4B), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3' untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequence of this gene suggest that it codes for the MTAP enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code is based on aminoacylation reactions where specific amino acids are attached to tRNAs bearing anticodon trinucleotides. However, the anticodon-independent specific aminoacylation of RNA minihelix substrates by bacterial and yeast tRNA synthetases suggested an operational RNA code for amino acids whereby specific RNA sequences/structures in tRNA acceptor stems correspond to specific amino acids. Because of the possible significance of the operational RNA code for the development of the genetic code, we investigated aminoacylation of synthetic RNA minihelices with a human enzyme to understand the sequences needed for that aminoacylation compared with those needed for a microbial system. We show here that the species-specific aminoacylation of glycine tRNAs is recapitulated by a species-specific aminoacylation of minihelices. Although the mammalian and Escherichia coli minihelices differ at 6 of 12 base pairs, two of the three nucleotides essential for aminoacylation by the E. coli enzyme are conserved in the mammalian minihelix. The two conserved nucleotides were shown to be also important for aminoacylation of the mammalian minihelix by the human enzyme. A simple interchange of the differing nucleotide enabled the human enzyme to now charge the bacterial substrate and not the mammalian minihelix. Conversely, this interchange made the bacterial enzyme specific for the mammalian substrate. Thus, the positional locations (if not the actual nucleotides) for the operational RNA code for glycine appear conserved from bacteria to mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A typing method for bacteria was developed and applied to several species, including Escherichia coli and Actinobacillus actinomycetemcomitans. Total genomic DNA was digested with a restriction endonuclease, and fragments were enabled with [alpha-32P]dATP by using the Klenow fragment of DNA polymerase and separated by electrophoresis in 6% polyacrylamide/8 M urea (sequencing gel). Depending on the restriction endonuclease and the bacterium, the method produced approximately 30-50 well-separated fragments in the size range of 100-400 nucleotides. For A. actinomycetemcomitans, all strains had bands in common. Nevertheless, many polymorphisms could be observed, and the 31 strains tested could be classified into 29 distinct types. Furthermore, serotype-specific fragments could be assigned for the three serotypes investigated. The method described is very sensitive, allowing more distinct types to be distinguished than other commonly used typing methods. When the method was applied to 10 other clinically relevant bacterial species, both species-specific bands and strain-specific bands were found. Isolates from different locations of one patient showed indistinguishable patterns. Computer-assisted analysis of the DNA fingerprints allowed the determination of similarity coefficients. It is concluded that genomic fingerprinting by restriction fragment end labeling (RFEL) is a powerful and generally applicable technique to type bacterial species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of NusA on the RNA polymerase contacts made by nucleotides at internal positions in the nascent RNA in Escherichia coli transcription complexes were analyzed by using the photocrosslinking nucleotide analog 5-[(4-azidophenacyl) thio]-UMP. It was placed at nucleotides between +6 and +15 in RNA transcribed from the phage lambda PR' promoter. Crosslinks of analog in these positions in RNAs which contained either 15, 28, 29, or 49 nt were examined. Contacts between the nascent RNA and proteins in the transcription complex were analyzed as the RNA was elongated, by placing the crosslinker nearest the 5' end of the RNA 10, 23, 24, or 44 nt away from the 3' end. The beta or beta' subunit of polymerase, and NusA when added, were contacted by RNA from 15 to 49 nt long. When the upstream crosslinker was 24 nt from the 3" end of the RNA (29-nt RNA), alpha was also contacted in the absence of NusA. The addition of NusA prevented RNA crosslinking to alpha. When the crosslinker was 44 nt from the 3' end (49-nt RNA), alpha crosslinks were still observed, but crosslinks to beta or beta' and NusA were greatly diminished. RNA crosslinking to alpha, and loss of this crosslink when NusA was added, was observed in the presence of NusB, NusE, and NusG and when transcription was carried out in the presence of an E. coli S100 cell extract. Peptide mapping localized the RNA interactions to the C-terminal domain of alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Domain 5 (D5) is a small hairpin structure within group II introns. A bimolecular assay system depends on binding by D5 to an intron substrate for self-splicing activity. In this study, mutations in D5 identify two among six nearly invariant nucleotides as being critical for 5' splice junction hydrolysis but unimportant for binding. A mutation at another site in D5 blocks binding. Thus, mutations can distinguish two D5 functions: substrate binding and catalysis. The secondary structure of D5 may resemble helix I formed by the U2 and U6 small nuclear RNAs in the eukaryotic spliceosome. Our results support a revision of the previously proposed correspondence between D5 and helix I on the basis of the critical trinucleotide 5'-AGC-3' present in both. We suggest that this trinucleotide plays a similar role in promoting the chemical reactions for both splicing systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncogenic retroviruses carry coding sequences that are transduced from cellular protooncogenes. Natural transduction involves two nonhomologous recombinations and is thus extremely rare. Since transduction has never been reproduced experimentally, its mechanism has been studied in terms of two hypotheses: (i) the DNA model, which postulates two DNA recombinations, and (ii) the RNA model, which postulates a 5' DNA recombination and a 3' RNA recombination occurring during reverse transcription of viral and protooncogene RNA. Here we use two viral DNA constructs to test the prediction of the DNA model that the 3' DNA recombination is achieved by conventional integration of a retroviral DNA 3' of the chromosomal protooncogene coding region. For the DNA model to be viable, such recombinant viruses must be infectious without the purportedly essential polypurine tract (ppt) that precedes the 3' long terminal repeat (LTR) of all retroviruses. Our constructs consist of a ras coding region from Harvey sarcoma virus which is naturally linked at the 5' end to a retroviral LTR and artificially linked at the 3' end either directly (construct NdN) or by a cellular sequence (construct SU) to the 5' LTR of a retrovirus. Both constructs lack the ppt, and the LTR of NdN even lacks 30 nucleotides at the 5' end. Both constructs proved to be infectious, producing viruses at titers of 10(5) focus-forming units per ml. Sequence analysis proved that both viruses were colinear with input DNAs and that NdN virus lacked a ppt and the 5' 30 nucleotides of the LTR. The results indicate that DNA recombination is sufficient for retroviral transduction and that neither the ppt nor the complete LTR is essential for retrovirus replication. DNA recombination explains the following observations by others that cannot be reconciled with the RNA model: (i) experimental transduction is independent of the packaging efficiency of viral RNA, and (ii) experimental transduction may invert sequences with respect to others, as expected for DNA recombination during transfection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diagnosi di neoplasia epiteliale maligna polmonare è legata tradizionalmente alla distinzione tra carcinoma a piccole cellule (small-cell lung cancer, SCLC) e carcinoma non-a piccole cellule del polmone (non-small-cell lung cancer, NSCLC). Nell’ambito del NSCLC attualmente è importante di-stinguere l’esatto istotipo (adenocarcinoma, carcinoma squamocellulare e carcinoma neuroendocrino) perchè l’approccio terapeutico cambia a seconda dell’istotipo del tumore e la chemioterapia si dimostra molto spesso inefficace. Attualmente alcuni nuovi farmaci a bersaglio molecolare per il gene EGFR, come Erlotinib e Gefitinib, sono utilizzati per i pazienti refrattari al trattamento chemioterapico tradizionale, che non hanno risposto a uno o più cicli di chemioterapia o che siano progrediti dopo questa. I test per la rilevazione di specifiche mutazioni nel gene EGFR permettono di utilizzare al meglio questi nuovi farmaci, applicandoli anche nella prima linea di trattamento sui pazienti che hanno una maggiore probabilità di risposta alla terapia. Sfortunatamente, non tutti i pazienti rispondono allo stesso modo quando trattati con farmaci anti-EGFR. Di conseguenza, l'individuazione di biomarcatori predittivi di risposta alla terapia sarebbe di notevole importanza per aumentare l'efficacia dei questi farmaci a target molecolare e trattare con farmaci diversi i pazienti che con elevata probabilità non risponderebbero ad essi. I miRNAs sono piccole molecole di RNA endogene, a singolo filamento di 20-22 nucleotidi che svolgono diverse funzioni, una delle più importanti è la regolazione dell’espressione genica. I miRNAs possono determinare una repressione dell'espressione genica in due modi: 1-legandosi a sequenze target di mRNA, causando così un silenziamento del gene (mancata traduzione in proteina), 2- causando la degradazione dello specifico mRNA. Lo scopo della ricerca era di individuare biomarcatori capaci di identificare precocemente i soggetti in grado di rispondere alla terapia con Erlotinib, aumentando così l'efficacia del farmaco ed evitan-do/riducendo possibili fenomeni di tossicità e il trattamento di pazienti che probabilmente non ri-sponderebbero alla terapia offrendo loro altre opzioni prima possibile. In particolare, il lavoro si è fo-calizzato sul determinare se esistesse una correlazione tra la risposta all'Erlotinib ed i livelli di espressione di miRNAs coinvolti nella via di segnalazione di EGFR in campioni di NSCLC prima dell’inizio della terapia. Sono stati identificati 7 microRNA coinvolti nel pathway di EGFR: miR-7, -21, 128b, 133a, -133b, 146a, 146b. Sono stati analizzati i livelli di espressione dei miRNA mediante Real-Time q-PCR in campioni di NSCLC in una coorte di pazienti con NSCLC metastatico trattati con Erlotinib dal 1° gennaio 2009 al 31 dicembre 2014 in 2°-3° linea dopo fallimento di almeno un ciclo di chemioterapia. I pazienti sottoposti a trattamento con erlotinib per almeno 6 mesi senza presentare progressione alla malattia sono stati definiti “responders” (n=8), gli altri “non-responders” (n=25). I risultati hanno mostrato che miR-7, -133b e -146a potrebbero essere coinvolti nella risposta al trat-tamento con Erlotinib. Le indagini funzionali sono state quindi concentrate su miR-133b, che ha mo-strato la maggiore espressione differenziale tra i due gruppi di pazienti. E 'stata quindi studiata la capacità di miR-133b di regolare l'espressione di EGFR in due linee di cellule del cancro del polmone (A549 e H1299). Sono stati determinati gli effetti di miR-133b sulla crescita cellulare. E’ stato anche analizzato il rapporto tra miR-133b e sensibilità a Erlotinib nelle cellule NSCLC. L'aumento di espressione di miR-133b ha portato ad una down-regolazione del recettore di EGF e del pathway di EGFR relativo alla linea cellulare A549. La linea cellulare H1299 era meno sensibili al miR-133b up-regulation, probabilmente a causa dell'esistenza di possibili meccanismi di resistenza e/o di com-pensazione. La combinazione di miR-133b ed Erlotinib ha aumentato l'efficacia del trattamento solo nella linea cellulare A549. Nel complesso, questi risultati indicano che miR-133b potrebbe aumentare / ripristinare la sensibilità di Erlotinib in una frazione di pazienti.