917 resultados para nonlinear propagation
Resumo:
We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
Pressure wave refrigerators (PWR) refrigerate the gas through periodical expansion waves. Due to its simple structure and robustness, PWR may have many potential applications if the efficiency becomes competitive with existing alternative devices. In order to improve the efficiency, the characteristics of wave propagation in a PWR are studied by experiment, numerical simulation and theoretical analysis. Based on the experimental results and numerical simulation, a simplified model is suggested, which includes the assumptions of flux-equilibrium and conservation of the free energy. This allows the independent analysis of the operation parameters and design specifics. Furthermore, the optimum operation condition can be deduced. Some considerations to improve the PWR efficiency are also given.
Resumo:
针对氢/空气混合物,通过实验研究了其预混火焰在半开口管道中的火焰传播加速现象,结果表明,火焰传播状态随着氢气当量比的变化而发生改变。当氢/空气混合物被点燃后,由于障碍物的扰动,火焰在管道中不断加速传播,并最终到达一准稳态传播。在氢气当量比0.31附近时,火焰速度发生跃变。当氢气当量比足够大时,火焰传播由爆燃态转变为爆轰态。在本实验条件下,爆燃转准爆轰的临界条件是d/Lambda>=2.6(d是圆环形障碍物内径,人是爆轰格胞尺度)。障碍物阻塞比的变化对最大火焰速度和压力提升的影响不明显。
Resumo:
A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.
Resumo:
基于管道微单元体平衡建立了海管单点提升的非线性力学模型的控制微分方程组,使用变弧长的无量纲代换将动边界问题化为固定边界的两点边值问题,利用maple环境下编制的两点边值问题的打靶法程序得到了该问题在各个提升阶段的数值解答和在单点提升过程中管道的极限弯矩约为0.71q~{1/3}(EI)~{2/3}。
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
Numerous microcracks propagation in one metal matrix composite, Al/SiCp under impact loading was investigated. The test data was got with a specially designed impact experimental approach. The analysis to the density, nucleating locations and distributions of the microcracks as well as microstructure effects of the original composite was received particular emphasis. The types of microcracks or debonding nucleated in the tested composite were dependent on the stress level and its duration. Distributions of the microcracks were depended on that of microstructures of the tested composite while total number of microcracks in unit area and unit duration, was controlled by the stress levels. Also, why the velocity was much lower than theoretical estimations for elastic solids and why the microcracks propagating velocities increased with the stress levels' increasing in current experiments were analysed and explained.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to Biot's strain is introduced, and a nonlinear evolution