857 resultados para newborn intensive care
Resumo:
Background: This is an update of a review last published in Issue 5, 2010, of The Cochrane Library. Reducing weaning time is desirable in minimizing potential complications from mechanical ventilation. Standardized weaning protocols are purported to reduce time spent on mechanical ventilation. However, evidence supporting their use in clinical practice is inconsistent. Objectives: The first objective of this review was to compare the total duration of mechanical ventilation of critically ill adults who were weaned using protocols versus usual (non-protocolized) practice.The second objective was to ascertain differences between protocolized and non-protocolized weaning in outcomes measuring weaning duration, harm (adverse events) and resource use (intensive care unit (ICU) and hospital length of stay, cost).The third objective was to explore, using subgroup analyses, variations in outcomes by type of ICU, type of protocol and approach to delivering the protocol (professional-led or computer-driven). Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE (1950 to January 2014), EMBASE (1988 to January 2014), CINAHL (1937 to January 2014), LILACS (1982 to January 2014), ISI Web of Science and ISI Conference Proceedings (1970 to February 2014), and reference lists of articles. We did not apply language restrictions. The original search was performed in January 2010 and updated in January 2014.Selection criteriaWe included randomized controlled trials (RCTs) and quasi-RCTs of protocolized weaning versus non-protocolized weaning from mechanical ventilation in critically ill adults. Data collection and analysis: Two authors independently assessed trial quality and extracted data. We performed a priori subgroup and sensitivity analyses. We contacted study authors for additional information. Main results: We included 17 trials (with 2434 patients) in this updated review. The original review included 11 trials. The total geometric mean duration of mechanical ventilation in the protocolized weaning group was on average reduced by 26% compared with the usual care group (N = 14 trials, 95% confidence interval (CI) 13% to 37%, P = 0.0002). Reductions were most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. Weaning duration was reduced by 70% (N = 8 trials, 95% CI 27% to 88%, P = 0.009); and ICU length of stay by 11% (N = 9 trials, 95% CI 3% to 19%, P = 0.01). There was significant heterogeneity among studies for total duration of mechanical ventilation (I2 = 67%, P < 0.0001) and weaning duration (I2 = 97%, P < 0.00001), which could not be explained by subgroup analyses based on type of unit or type of approach. Authors' conclusions: There is evidence of reduced duration of mechanical ventilation, weaning duration and ICU length of stay with use of standardized weaning protocols. Reductions are most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. However, significant heterogeneity among studies indicates caution in generalizing results. Some study authors suggest that organizational context may influence outcomes, however these factors were not considered in all included studies and could not be evaluated. Future trials should consider an evaluation of the process of intervention delivery to distinguish between intervention and implementation effects. There is an important need for further development and research in the neurosurgical population.
Resumo:
IntroductionAutomated weaning systems may improve adaptation of mechanical support for a patient’s ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. Our objective was to compare mechanical ventilator weaning duration for critically ill adults and children when managed with automated systems versus non-automated strategies. Secondary objectives were to determine differences in duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), mortality, and adverse events.MethodsElectronic databases were searched to 30 September 2013 without language restrictions. We also searched conference proceedings; trial registration websites; and article reference lists. Two authors independently extracted data and assessed risk of bias. We combined data using random-effects modelling.ResultsWe identified 21 eligible trials totalling 1,676 participants. Pooled data from 16 trials indicated that automated systems reduced the geometric mean weaning duration by 30% (95% confidence interval (CI) 13% to 45%), with substantial heterogeneity (I2 = 87%, P <0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not with surgical populations or using other systems. Automated systems reduced ventilation duration with no heterogeneity (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of effect on mortality, hospital LOS, reintubation, self-extubation and non-invasive ventilation following extubation. Automated systems reduced prolonged mechanical ventilation and tracheostomy. Overall quality of evidence was high.ConclusionsAutomated systems may reduce weaning and ventilation duration and ICU stay. Due to substantial trial heterogeneity an adequately powered, high quality, multi-centre randomized controlled trial is needed.
Resumo:
Purpose: There is an urgent need to develop diagnostic tests to improve the detection of pathogens causing life-threatening infection (sepsis). SeptiFast is a CE-marked multi-pathogen real-time PCR system capable of detecting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here a systematic review and meta-analysis of diagnostic accuracy studies of SeptiFast in the setting of suspected sepsis.
Methods: A comprehensive search strategy was developed to identify studies that compared SeptiFast with blood culture in suspected sepsis. Methodological quality was assessed using QUADAS. Heterogeneity of studies was investigated using a coupled forest plot of sensitivity and specificity and a scatter plot in receiver operator characteristic space. Bivariate model method was used to estimate summary sensitivity and specificity.
Results: From 41 phase III diagnostic accuracy studies, summary sensitivity and specificity for SeptiFast compared with blood culture were 0.68 (95 % CI 0.63–0.73) and 0.86 (95 % CI 0.84–0.89) respectively. Study quality was judged to be variable with important deficiencies overall in design and reporting that could impact on derived diagnostic accuracy metrics.
Conclusions: SeptiFast appears to have higher specificity than sensitivity, but deficiencies in study quality are likely to render this body of work unreliable. Based on the evidence presented here, it remains difficult to make firm recommendations about the likely clinical utility of SeptiFast in the setting of suspected sepsis.
Resumo:
Background Automated closed loop systems may improve adaptation of mechanical support for a patient's ventilatory needs and facilitate systematic and early recognition of their ability to breathe spontaneously and the potential for discontinuation of ventilation. This review was originally published in 2013 with an update published in 2014. Objectives The primary objective for this review was to compare the total duration of weaning from mechanical ventilation, defined as the time from study randomization to successful extubation (as defined by study authors), for critically ill ventilated patients managed with an automated weaning system versus no automated weaning system (usual care). Secondary objectives for this review were to determine differences in the duration of ventilation, intensive care unit (ICU) and hospital lengths of stay (LOS), mortality, and adverse events related to early or delayed extubation with the use of automated weaning systems compared to weaning in the absence of an automated weaning system. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 8); MEDLINE (OvidSP) (1948 to September 2013); EMBASE (OvidSP) (1980 to September 2013); CINAHL (EBSCOhost) (1982 to September 2013); and the Latin American and Caribbean Health Sciences Literature (LILACS). Relevant published reviews were sought using the Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment Database (HTA Database). We also searched the Web of Science Proceedings; conference proceedings; trial registration websites; and reference lists of relevant articles. The original search was run in August 2011, with database auto-alerts up to August 2012. Selection criteria We included randomized controlled trials comparing automated closed loop ventilator applications to non-automated weaning strategies including non-protocolized usual care and protocolized weaning in patients over four weeks of age receiving invasive mechanical ventilation in an ICU. Data collection and analysis Two authors independently extracted study data and assessed risk of bias. We combined data in forest plots using random-effects modelling. Subgroup and sensitivity analyses were conducted according to a priori criteria. Main results We included 21 trials (19 adult, two paediatric) totaling 1676 participants (1628 adults, 48 children) in this updated review. Pooled data from 16 eligible trials reporting weaning duration indicated that automated closed loop systems reduced the geometric mean duration of weaning by 30% (95% confidence interval (CI) 13% to 45%), however heterogeneity was substantial (I2 = 87%, P < 0.00001). Reduced weaning duration was found with mixed or medical ICU populations (42%, 95% CI 10% to 63%) and Smartcare/PS™ (28%, 95% CI 7% to 49%) but not in surgical populations or using other systems. Automated closed loop systems reduced the duration of ventilation (10%, 95% CI 3% to 16%) and ICU LOS (8%, 95% CI 0% to 15%). There was no strong evidence of an effect on mortality rates, hospital LOS, reintubation rates, self-extubation and use of non-invasive ventilation following extubation. Prolonged mechanical ventilation > 21 days and tracheostomy were reduced in favour of automated systems (relative risk (RR) 0.51, 95% CI 0.27 to 0.95 and RR 0.67, 95% CI 0.50 to 0.90 respectively). Overall the quality of the evidence was high with the majority of trials rated as low risk. Authors' conclusions Automated closed loop systems may result in reduced duration of weaning, ventilation and ICU stay. Reductions are more likely to occur in mixed or medical ICU populations. Due to the lack of, or limited, evidence on automated systems other than Smartcare/PS™ and Adaptive Support Ventilation no conclusions can be drawn regarding their influence on these outcomes. Due to substantial heterogeneity in trials there is a need for an adequately powered, high quality, multi-centre randomized controlled trial in adults that excludes 'simple to wean' patients. There is a pressing need for further technological development and research in the paediatric population.
Resumo:
Burkholderia cepacia complex (Bcc) comprises nine closely related species or genomovars. It is an important causative agent of opportunistic infections and waterborne nosocomial infections. B. cepacia (formerly genomovar I) was identified from the blood culture of a baby in our neonatal unit (NU) in March 2005. B. cepacia was isolated four times from clinical specimens since the introduction of non-touch taps in the NU from 2000 to 2005 and only once from 1994 to 2000. Environmental samples were collected from the NU, including tap water from non-touch taps. Clinical and environmental isolates of Bcc were characterized using molecular identification and strain typing. A literature review was undertaken to delineate a method for eradication of Bcc. Several variations for hot water eradication of the organism from the taps were attempted. Genotyping and molecular analysis revealed that tap water isolates were B. cenocepacia which was a different species from the B. cepacia isolated from blood cultures of the neonate. However, B. cenocepacia has been known to cause nosocomial outbreaks and it was eventually eradicated from the NU by using repeated thermal shock (hot water at 65 degrees C for 10 min), changing taps and decolonizing sinks with hypochlorite. Molecular typing is useful in assisting the investigation of Bcc nosocomial infections.
Resumo:
Although survival has improved significantly in recent years, prematurity remains a major cause of infant and childhood mortality and morbidity. Preterm births (<37 weeks of gestation) account for 8% of live births representing >50 000 live births each year in the UK. Preterm birth, irrespective of whether babies require neonatal intensive care, is associated with increased respiratory symptoms, partially reversible airflow obstruction and abnormal thoracic imaging in childhood and in young adulthood compared with those born at term. Having failed to reach their optimal peak lung function in early adulthood, there are as yet unsubstantiated concerns of accelerated lung function decline especially if exposed to noxious substances leading to chronic respiratory illness; even if the rate of decline in lung function is normal, the threshold for respiratory symptoms will be crossed early. Few adult respiratory physicians enquire about the neonatal period in their clinical practice. The management of these subjects in adulthood is largely evidence free. They are often labelled as asthmatic although the underlying mechanisms are likely to be very different. Smoking cessation, maintaining physical fitness, annual influenza immunisation and a general healthy lifestyle should be endorsed irrespective of any symptoms. There are a number of clinical and research priorities to maximise the quality of life and lung health in the longer term not least understanding the underlying mechanisms and optimising treatment, rather than extrapolating from other airway diseases.
Resumo:
Background: The incidence of delirium in ventilated patients is estimated at up to 82%, and it is associated with longer intensive care and hospital stays, and long-term cognitive impairment and mortality. The pathophysiology of delirium has been linked with inflammation and neuronal apoptosis. Simvastatin has pleiotropic properties; it penetrates the brain and, as well as reducing cholesterol, reduces inflammation when used at clinically relevant doses over the short term. This is a single centre randomised, controlled trial which aims to test the hypothesis that treatment with simvastatin will modify delirium incidence and outcomes.
Methods/Design: The ongoing study will include 142 adults admitted to the Watford General Hospital Intensive Care Unit who require mechanical ventilation in the first 72 hours of admission. The primary outcome is the number of delirium- and coma-free days in the first 14 days. Secondary outcomes include incidence of delirium, delirium- and coma-free days in the first 28 days, days in delirium and in coma at 14 and 28 days, number of ventilator-free days at 28 days, length of critical care and hospital stay, mortality, cognitive decline and healthcare resource use. Informed consent will be taken from patient's consultee before randomisation to receive either simvastatin (80 mg) or placebo once daily. Daily data will be recorded until day 28 after randomisation or until discharge from the ICU if sooner. Surviving patients will be followed up on at six months from discharge. Plasma and urine samples will be taken to investigate the biological effect of simvastatin on systemic markers of inflammation, as related to the number of delirium- and coma-free days, and the potential of cholinesterase activity and beta-amyloid as predictors of the risk of delirium and long-term cognitive impairment.
Discussion: This trial will test the efficacy of simvastatin on reducing delirium in the critically ill. If patients receiving the statin show a reduced number of days in delirium compared with the placebo group, the inflammatory theory implicated in the pathogenesis of delirium will be strengthened.
Resumo:
In spite of decades of research, the acute respiratory distress syndrome (ARDS) continues to have an unacceptably high mortality and morbidity. Mesenchymal stromal cells (MSCs) present a promising candidate for the treatment of this condition and have demonstrated benefit in preclinical models. MSCs, which are a topic of growing interest in many inflammatory disorders, have already progressed to early phase clinical trials in ARDS. While a number of their mechanisms of effect have been elucidated, a better understanding of the complex actions of these cells may pave the way for MSC modifications, which might enable more effective translation into clinical practice.
Resumo:
BACKGROUND: Despite vaccines and improved medical intensive care, clinicians must continue to be vigilant of possible Meningococcal Disease in children. The objective was to establish if the procalcitonin test was a cost-effective adjunct for prodromal Meningococcal Disease in children presenting at emergency department with fever without source.
METHODS AND FINDINGS: Data to evaluate procalcitonin, C-reactive protein and white cell count tests as indicators of Meningococcal Disease were collected from six independent studies identified through a systematic literature search, applying PRISMA guidelines. The data included 881 children with fever without source in developed countries.The optimal cut-off value for the procalcitonin, C-reactive protein and white cell count tests, each as an indicator of Meningococcal Disease, was determined. Summary Receiver Operator Curve analysis determined the overall diagnostic performance of each test with 95% confidence intervals. A decision analytic model was designed to reflect realistic clinical pathways for a child presenting with fever without source by comparing two diagnostic strategies: standard testing using combined C-reactive protein and white cell count tests compared to standard testing plus procalcitonin test. The costs of each of the four diagnosis groups (true positive, false negative, true negative and false positive) were assessed from a National Health Service payer perspective. The procalcitonin test was more accurate (sensitivity=0.89, 95%CI=0.76-0.96; specificity=0.74, 95%CI=0.4-0.92) for early Meningococcal Disease compared to standard testing alone (sensitivity=0.47, 95%CI=0.32-0.62; specificity=0.8, 95% CI=0.64-0.9). Decision analytic model outcomes indicated that the incremental cost effectiveness ratio for the base case was £-8,137.25 (US $ -13,371.94) per correctly treated patient.
CONCLUSIONS: Procalcitonin plus standard recommended tests, improved the discriminatory ability for fatal Meningococcal Disease and was more cost-effective; it was also a superior biomarker in infants. Further research is recommended for point-of-care procalcitonin testing and Markov modelling to incorporate cost per QALY with a life-time model.