991 resultados para nebraska
Resumo:
Entrepreneurial intention is a primary step to create new venture in the entrepreneurial process. Environmental conditions are one of the main factors that are strengthening or weakening intention of prospective entrepreneur. Therefore, it is important to develop conducive environments for entrepreneurship to promote entrepreneurial intention. Moreover, the promoted entrepreneurial intention will raise the rate of new venture creation. This paper investigates the relationships between five key environments for entrepreneurship and entrepreneurial intention. The five entrepreneurial environments are: government policies and procedures, socioeconomic conditions, entrepreneurial and business skills, financial assistance, and non-financial assistance, respectively. Conjoint analysis was used to determine the significance of five environmental factors conducive to entrepreneurial intention. In this conjoint experiment, 1370 decisions were made by 137 university students. Significant relationships were found between all of these environmental factors and intention. Comparative importance of environmental factors was also calculated, along with sub-conjoint analyses based on characteristics of the sample.
Resumo:
Child maltreatment has been linked to a myriad of long-term difficulties, including trauma symptomatology. However, not all victims experience long-term distress. Thus, a burgeoning area of research focuses on factors that may impede or facilitate resiliency to the psychological correlates of child maltreatment. Specifically, the severity of the abusive acts may be associated with greater long-term difficulties. To date, however, with the exception of child sexual abuse, few studies have examined the severity of maltreatment as a risk factor in the development of trauma symptoms. In contrast, social support has been theorized to contribute to resiliency following abuse. However, to date, the majority of studies examining positive social support as a protective factor have relied on self-report measures of perceived social support, rather than observational measures of received social support. Moreover, no study to date has examined the role that negative social support (i.e, blaming, criticizing) may play in potentiating trauma symptoms among victims of child maltreatment. Because child maltreatment involves serious boundary violations by a trusted person, a marital relationship is an important domain in which to examine these constructs. That is, it may serve as an arena for the manifestation of psychological disturbances related to maltreatment. Thus, the present study examined whether observationally measured positive and negative spousal social support moderated the relationship between child maltreatment severity (i.e., sexual, physical, psychological abuse; neglect) and trauma symptomatology in women and men. Results indicated that the severity of each type of child maltreatment significantly predicted increased adult trauma symptomatology. Contrary to hypothesized outcomes, positive spousal social support did not predict decreased trauma symptomatology. However, negative spousal social support generally did predict increased trauma symptomatology. There were no consistent patterns of interactions between child maltreatment severity and either type of social support. Future directions for research will be discussed and clinical implications with regard to the intrapersonal and interpersonal functioning of child maltreatment victims will be highlighted.
Resumo:
Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.
Resumo:
Aerial surveys were conducted in 1999 and 2000 to estimate the densities of ringed (Phoca hispida) and bearded (Erignathus barbatus) seals in the eastern Chukchi Sea. Survey lines were focused mainly on the coastal zone within 37 km of the shoreline, with additional lines flown 148–185 km offshore to assess how densities of seals changed as a function of distance from shore. Satellite-linked time-depth recorders were attached to ringed seals in both years to evaluate the time spent basking on the ice surface. Haulout patterns indicated that ringed seals transitioned to basking behavior in late May and early June, and that the largest proportion of seals (60–68%) was hauled out between 0830 and 1530 local solar time. Ringed seals were relatively common in nearshore fast ice and pack ice, with lower densities in offshore pack ice. The average density of ringed seals was 1.91 seals km-2 in 1999 (range 0.37– 16.32) and 1.62 seals km-2 in 2000 (range 0.42–19.4), with the highest densities of ringed seals found in coastal waters south of Kivalina and near Kotzebue Sound. The estimated abundance of ringed seals for the entire study area was similar in 1999 (252,488 seals, SE=47,204) and 2000 (208,857 seals, SE=25,502). Bearded seals were generally more common in offshore pack ice, with the exception of high bearded seal numbers observed near the shore south of Kivalina. Bearded seal densities were not adjusted for haulout behavior, and therefore, abundance was not estimated. Unadjusted average bearded seal density was 0.07 seals km-2 in 1999 (range 0.011–0.393) and 0.14 seals km-2 in 2000 (range 0.009– 0.652). Levels of primary productivity, benthic biomass, and fast ice distribution may influence the distributions of ringed and bearded seals in the Chukchi Sea. Information on movement and haulout behavior of ringed and bearded seals would be very useful for designing future surveys.
Resumo:
We monitored the haul-out behavior of 68 radio-tagged harbor seals (Phoca vitulina) during the molt season at two Alaskan haul-out sites (Grand Island, August-September 1994; Nanvak Bay, August-September 2000). For each site, we created a statistical model of the proportion of seals hauled out as a function of date, time of day, tide, and weather covariates. Using these models, we identified the conditions that would result in the greatest proportion of seals hauled out. Although those “ideal conditions” differed between sites, the proportion of seals predicted to be hauled out under those conditions was very similar (81.3% for Grand Island and 85.7% for Nanvak Bay). The similar estimates for both sites suggest that haul-out proportions under locally ideal conditions may be constant between years and geographic regions, at least during the molt season.
Resumo:
The abundance of harbor seals (Phoca vitulina richardii) has declined in recent decades at several Alaska locations. The causes of these declines are unknown, but there is concern about the status of the populations, especially in the Gulf of Alaska. To assess the status of harbor seals in the Gulf of Alaska, we conducted aerial surveys of seals on their haul-out sites in August-September 1996. Many factors influence the propensity of seals to haul out, including tides, weather, time of day, and time of year. Because these “covariates” cannot simultaneously be controlled through survey design, we used a regression model to adjust the counts to an estimate of the number of seals that would have been ashore during a hypothetical survey conducted under ideal conditions for hauling out. The regression, a generalized additive model, not only provided an adjustment for the covariates, but also confirmed the nature and shape of the covariate effects on haul-out behavior. The number of seals hauled out was greatest at the beginning of the surveys (mid-August). There was a broad daily peak from about 1100-1400 local solar time. The greatest numbers were hauled out at low tide on terrestrial sites. Tidal state made little difference in the numbers hauled out on glacial ice, where the area available to seals did not fluctuate with the tide. Adjusting the survey counts to the ideal state for each covariate produced an estimate of 30,035 seals, about 1.8 times the total of the unadjusted counts (16,355 seals). To the adjusted count, we applied a correction factor of 1.198 from a separate study of two haul-out sites elsewhere in Alaska, to produce a total abundance estimate of 35,981 (SE 1,833). This estimate accounts both for the effect of covariates on survey counts and for the proportion of seals that remained in the water even under ideal conditions for hauling out.
Resumo:
There is increasing interest in the diving behavior of marine mammals. However, identifying foraging among recorded dives often requires several assumptions. The simultaneous acquisition of images of the prey encountered, together with records of diving behavior will allow researchers to more fully investigate the nature of subsurface behavior. We tested a novel digital camera linked to a time-depth recorder on Antarctic fur seals (Arctocephalus gazella). During the austral summer 2000-2001, this system was deployed on six lactating female fur seals at Bird Island, South Georgia, each for a single foraging trip. The camera was triggered at depths greater than 10 m. Five deployments recorded still images (640 x 480 pixels) at 3-sec intervals (total 8,288 images), the other recorded movie images at 0.2-sec intervals (total 7,598 frames). Memory limitation (64 MB) restricted sampling to approximately 1.5 d of 5-7 d foraging trips. An average of 8.5% of still pictures (2.4%-11.6%) showed krill (Euphausia superba) distinctly, while at least half the images in each deployment were empty, the remainder containing blurred or indistinct prey. In one deployment krill images were recorded within 2.5 h (16 km, assuming 1.8 m/sec travel speed) of leaving the beach. Five of the six deployments also showed other fur seals foraging in conjunction with the study animal. This system is likely to generate exciting new avenues for interpretation of diving behavior.
Resumo:
A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler’s (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).
Resumo:
Central-place foragers that must return to a breeding site to deliver food to offspring are faced with trade-offs between prey patch quality and distance from the colony. Among colonial animals, pinnipeds and seabirds may have different provisioning strategies, due to differences in their ability to travel and store energy. We compared the foraging areas of lactating Antarctic fur seals and chinstrap penguins breeding at Seal Island, Antarctica, to investigate whether they responded differently to the distribution of their prey (Antarctic krill and myctophid fish) and spatial heterogeneity in their habitat. Dense krill concentrations occurred in the shelf region near the colony. However, only brooding penguins, which are expected to be time-minimizers because they must return frequently with whole food for their chicks, foraged mainly in this proximal shelf region. Lactating fur seals and incubating penguins, which can make longer trips to increase energy gain per trip, and so are expected to be energy-maximizers, foraged in the more distant (>20 km from the island) slope and oceanic regions. The shelf region was characterized by more abundant, but lower-energy-content immature krill, whereas the slope and oceanic regions had less abundant but higher-energy-content gravid krill, as well as high-energy-content myctophids. Furthermore, krill in the shelf region undertook diurnal vertical migration, whereas those in the slope and oceanic regions stayed near the surface throughout the day, which may enhance the capture rate for visual predators. Therefore, we sug- gest that the energy-maximizers foraged in distant, but potentially more profitable feeding regions, while the time-minimizers foraged in closer, but potentially less profitable regions. Thus, time and energy constraints derived from different provisioning strategies may result in sympatric colonial predator species using different foraging areas, and as a result, some central-place foragers use sub- optimal foraging habitats, in terms of the quality or quantity of available prey.
Resumo:
The hunting behavior of leopard seals Hydrurga leptonyx was monitored opportunistically at Seal Island, South Shetland Islands, during the austral summers from 1986/87 to 1994/95. Leopard seals used several methods to catch Antarctic fur seal pups Arctocephalus gazella and chinstrap penguins Pygoscelis antarctica, and individuals showed different hunting styles and hunting success. One to two leopard seals per year were responsible for an average of 60% of observed captures of fur seal pups. Leopard seals preyed on penguins throughout the summer, but preyed on fur seal pups only between late December and mid-February. Hunting behavior differed significantly between different locations on the island; fur seals were hunted only at one colony, and penguins were hunted in several areas. The relative abundance of prey types, size of prey in relation to predator, and specialization of individual leopard seals to hunt fur seal prey probably influence individual prey preferences among leopard seals. On five occasions, two leopard seals were seen together on Seal Island. Possible interpretations of the relationship between the interacting leopard seals included a mother-offspring relationship, a consorting male-female pair, and an adult leopard seal followed by an unrelated juvenile. In two incidents at Seal Island, two leopard seals were observed interacting while hunting: one seal captured fur seal pups and appeared to release them to the other seal. Observations of leopard seals interacting during hunting sessions were difficult to confirm as co-operative hunting, but they strongly implied that the two seals were not agonistic toward one another. The hunting success of individual leopard seals pursuing penguins or fur seals is probably high enough for co-operative hunting not to become a common hunting strategy; however, it may occur infrequently when it increases the hunting productivity of the seals.
Resumo:
1. The crabeater seal Lobodon carcinophaga is considered to be a key species in the krill-based food web of the Southern Ocean. Reliable estimates of the abundance of this species are necessary to allow the development of multispecies, predator–prey models as a basis for management of the krill fishery in the Southern Ocean. 2. A survey of crabeater seal abundance was undertaken in 1500 000 km2 of pack-ice off east Antarctica between longitudes 64–150° E during the austral summer of 1999/2000. Sighting surveys, using double observer line transect methods, were conducted from an icebreaker and two helicopters to estimate the density of seals hauled out on the ice in survey strips. Satellite-linked dive recorders were deployed on a sample of seals to estimate the probability of seals being hauled out on the ice at the times of day when sighting surveys were conducted. Model-based inference, involving fitting a density surface, was used to infer densities in the entire survey region from estimates in the surveyed areas. 3. Crabeater seal abundance was estimated to be between 0.7 and 1.4 million animals (with 95% confidence), with the most likely estimate slightly less than 1 million. 4. Synthesis and applications. The estimation of crabeater seal abundance in Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) management areas off east Antarctic where krill biomass has also been estimated recently provides the data necessary to begin extending from single-species to multispecies management of the krill fishery. Incorporation of all major sources of uncertainty allows a precautionary interpretation of crabeater abundance and demand for krill in keeping with CCAMLR’s precautionary approach to management. While this study focuses on the crabeater seal and management of living resources in the Southern Ocean, it has also led to technical and theoretical developments in survey methodology that have widespread potential application in ecological and resource management studies, and will contribute to a more fundamental understanding of the structure and function of the Southern Ocean ecosystem.
Resumo:
Antarctic fur seals (Arctocephalus gazella) in the South Shetland Islands are recovering from 19th-century exploitation more slowly than the main population at South Georgia. To document demographic changes associated with the recovery in the South Shetlands, we monitored fur seal abundance and reproduction in the vicinity of Elephant Island during austral summers from 1986/1987 through 1994/1995. Total births, mean and variance of birth dates, and average daily mortality rates were estimated from daily live pup counts at North Cove (NC) and North Annex (NA) colonies on Seal Island. Sightings of leopard seals (Hydrurga leptonyx) and incidents of leopard seal predation on fur seal pups were recorded opportunistically during daily fur seal research at both sites. High mortality of fur seal pups, attributed to predation by leopard seals frequently observed at NC, caused pup numbers to decline rapidly between January and March (i.e., prior to weaning) each year and probably caused a long-term decline in the size of that colony. The NA colony, where leopard seals were never observed, increased in size during the study. Pup mortality from causes other than leopard seal predation appeared to be similar at the two sites. The number of pups counted at four locations in the Elephant Island vicinity increased slowly, at an annual rate of 3.8%, compared to rates as high as 11% at other locations in the South Shetland Islands. Several lines of circumstantial evidence are consistent with the hypothesis that leopard seal predators limit the growth of the fur seal population in the Elephant Island area and perhaps in the broader population in the South Shetland Islands. The sustained growth of this fur seal population over many decades rules out certain predator–prey models, allowing inference about the interaction between leopard seals and fur seals even though it is less thoroughly studied than predator–prey systems of terrestrial vertebrates of the northern hemisphere. Top-down forces should be included in hypotheses for future research on the factors shaping the recovery of the fur seal population in the South Shetland Islands.
Resumo:
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups.
Resumo:
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Resumo:
This study’s objective was to investigate mandibular fractures in 50 short-finned pilot whales, Globicephala macrorhynchus, from two mass strandings. Based on current theories that this species is sexually dimorphic and polygynous, hypotheses were: (1) males should suffer more frequent or more substantial mandibular fractures than should females, and (2) fracture occurrence should increase with male reproductive maturity and potential correlates of maturity, such as age and length. Fractures were described and correlated with physical characteristics to infer possible explanations for injuries. Mandibular fractures were surprisingly common in males and females, being found in more than half of the animals examined (27/50, or 54% overall; 17/36 or 47% of females and 10/14 or 71% of males). Length was the only correlate of fracture presence; the proportion of animals showing evidence of fracture increased with length. These results offer some support to initial hypotheses, but there must be another set of consequences that contribute to mandibular fractures in females. A combination of intra- and interspecific interactions and life history characteristics may be responsible for fractures. Further research from a larger sample of this and other cetacean species are suggested to help elucidate both the causes and implications of mandibular fractures.