990 resultados para myocardial function
Resumo:
Introdução – Os estudos Gated – Single Photon Emission Computed Tomography (SPECT) são uma das técnicas de imagiologia cardíaca que mais evoluiu nas últimas décadas. Para a análise das imagens obtidas, a utilização de softwares de quantificação leva a um aumento da reprodutibilidade e exatidão das interpretações. O objetivo deste estudo consiste em avaliar, em estudos Gated-SPECT, a variabilidade intra e interoperador de parâmetros quantitativos de função e perfusão do miocárdio, obtidos com os softwares Quantitative Gated SPECT (QGS) e Quantitative Perfusion SPECT (QPS). Material e métodos – Recorreu-se a uma amostra não probabilística por conveniência de 52 pacientes, que realizaram estudos Gated-SPECT do miocárdio por razões clínicas e que integravam a base de dados da estação de processamento da Xeleris da ESTeSL. Os cinquenta e dois estudos foram divididos em dois grupos distintos: Grupo I (GI) de 17 pacientes com imagens com perfusão do miocárdio normal; Grupo II (GII) de 35 pacientes que apresentavam defeito de perfusão nas imagens Gated-SPECT. Todos os estudos foram processados 5 vezes por 4 operadores independentes (com experiência de 3 anos em Serviços de Medicina Nuclear com casuística média de 15 exames/semana de estudos Gated-SPECT). Para a avaliação da variabilidade intra e interoperador foi utilizado o teste estatístico de Friedman, considerando α=0,01. Resultados e discussão – Para todos os parâmetros avaliados, os respectivos valores de p não traduziram diferenças estatisticamente significativas (p>α). Assim, não foi verificada variabilidade intra ou interoperador significativa no processamento dos estudos Gated-SPECT do miocárdio. Conclusão – Os softwares QGS e QPS são reprodutíveis na quantificação dos parâmetros de função e perfusão avaliados, não existindo variabilidade introduzida pelo operador.
Resumo:
Aims - To compare reading performance in children with and without visual function anomalies and identify the influence of abnormal visual function and other variables in reading ability. Methods - A cross-sectional study was carried in 110 children of school age (6-11 years) with Abnormal Visual Function (AVF) and 562 children with Normal Visual Function (NVF). An orthoptic assessment (visual acuity, ocular alignment, near point of convergence and accommodation, stereopsis and vergences) and autorefraction was carried out. Oral reading was analyzed (list of 34 words). Number of errors, accuracy (percentage of success) and reading speed (words per minute - wpm) were used as reading indicators. Sociodemographic information from parents (n=670) and teachers (n=34) was obtained. Results - Children with AVF had a higher number of errors (AVF=3.00 errors; NVF=1.00 errors; p<0.001), a lower accuracy (AVF=91.18%; NVF=97.06%; p<0.001) and reading speed (AVF=24.71 wpm; NVF=27.39 wpm; p=0.007). Reading speed in the 3rd school grade was not statistically different between the two groups (AVF=31.41 wpm; NVF=32.54 wpm; p=0.113). Children with uncorrected hyperopia (p=0.003) and astigmatism (p=0.019) had worst reading performance. Children in 2nd, 3rd, or 4th grades presented a lower risk of having reading impairment when compared with the 1st grade. Conclusion - Children with AVF had reading impairment in the first school grade. It seems that reading abilities have a wide variation and this disparity lessens in older children. The slow reading characteristics of the children with AVF are similar to dyslexic children, which suggest the need for an eye evaluation before classifying the children as dyslexic.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Ultrassonografia Cardiovascular
Resumo:
Human virtual phantoms are being widely used to simulate and characterize the behavior of different organs, either in diagnosis stages but also to enable foreseeing the therapeutic effects obtained on a certain patient. In the present work a typical patient’s heart was simulated using XCAT2©, considering the possibility of a lesion and/or anatomical alteration being affecting the myocardium. These simulated images, were then used to carry out a set of parametric studies using Matlab©. Although performed in controlled sceneries, these studies are very important to understand and characterize the performance of the methodologies used, as well as to determine to what extent the relations between the perturbation introduced at the myocardium and the resulting simulated images can be considered conclusive.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Ultrassonografia Cardiovascular
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Intervenção Cardiovascular
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Ultrassonografia Cardiovascular
Resumo:
Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.
Resumo:
Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
This paper proposes a Genetic Algorithm (GA) for the design of combinational logic circuits. The fitness function evaluation is calculated using Fractional Calculus. This approach extends the classical fitness function by including a fractional-order dynamical evaluation. The experiments reveal superior results when comparing with the classical method.
Resumo:
This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.