728 resultados para multicathode welding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a method to indicate potential problems when planning dye penetrant and x-ray inspection of welded components. Inspection has been found to be an important part of the manufacturability evaluation made in a large CAD-based parametric environment for making multidisciplinary design simulations in early stages of design at an aircraft component manufacturer. The paper explains how the proposed method is to be included in the design platform at the company. It predicts the expected probability of detection of cracks (POD) in situations where the geometry of the parts is unfavourable for inspection so that potential problems can be discovered and solved in early stages. It is based on automatically extracting information from CAD-models and making a rule-based evaluation. It also provides a scale for how favourable the geometry is for inspection. In the paper it is also shown that the manufacturability evaluation need to take into consideration the expected stresses in the structures, highlighting the importance of multi-disciplinary simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of adhesives to join two different substrates is an efficient replacement to classic joining technologies such as welding and soldering. One the one hand adhesion has different advantages over those techniques such as an improved stress distribution and the potential weight reduction of the structure; on the other hand, two of the most important drawbacks are a relatively low fracture toughness and the need of an accurate surface preparation. These two aspects will be accurately analysed in the present work: the use of Nylon nanofibers as reinforcement for the adhesive should increase fracture toughness, while a surface preparation method consisting of mechanical and chemical treatments will be developed. After the specimens are produced, they will be tested in mode I fracture using a DCB (Double Beam Cantilever) test, which allows to measure the fracture toughness during crack propagation. At the end of the test, the surfaces of the adherends will be visually observed and SEM (Scanning Electronic Microscope) analysed in order to evaluate if adhesive or cohesive fracture occurred, and thus if surface treatments has been well developed to allow a better adhesive-aluminium joining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial robots are an inalienable part of modern automated production. Typical applications of robots include welding, painting, (dis)assembly, packaging, labeling, palletizing, pick and place and others. Many of that applications includes object manipulation. If the shape and position of the object are known in advance, it is possible to design the trajectory of the robot’s end-effector to take and place. Such a strategy is applicable for rigid objects and widely used in the manufacturing field. But flexible (deformable) objects can change their shape and position upon contact with the robot’s end-effector or environment. That is the reason why the general approach is unacceptable. It means that the robot can fail to grasp such an object and can’t place it in the desired position. This thesis has addressed the problem of cable manipulation by bilateral robotic setup for the industrial manufacturing of electrical switchgear. The considered solution is based on the idea of tensioned cable. If the cable was grasped by the ends and tensioned, it has a line shape. Since the position of the robot’s end-effectors known, the position of the cable is known as well. Such an approach is capable to place cable in cable ducts of switchgear. The considered solution has been tested experimentally on a real bilateral robotic setup.