957 resultados para molecularly imprinted polymers
Resumo:
A study of the gamma-radiolysis of the commercial polymers U-polymer, UP (Unitake) and polycarbonate, PC, (Aldrich) has been undertaken using ESR spectroscopy. The G-value of radical formation at 77 K has been found to be 0.31 +/- 0.01 for UP and 0.5 +/- 0.02 for PC. By using thermal annealing and spectral subtraction, the paramagnetic species formed on irradiation has been assigned. The effect of radiation on the chemical structure of UP and PC has been investigated at ambient temperature and at 423 K. The NMR results show that a new phenol type chain end is formed in the polymers on exposure to gamma-radiation. The G-value of formation of the new phenol ends was estimated to be 0.7 for PC (423 K) and 0.4 for UP (300 K). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Incorporation of 1 wt % of triallyl isocyanurate (TAIC) significantly enhanced the radiation crosslinking of the perfluoroelastomer, poly(tetrafluoroethylene-co-perfluoromethylvinyl ether) (TFE/PMVE). The dose for gelation was lowered by 70% with the presence of TAIC. The additive also improved the tensile properties of TFE/ PMVE both before and after crosslinking by irradiation. Higher radical yields were obtained with the presence of TAIC at 77 K, indicating the crosslinking promoter was acting as a radical trap. ESR studies showed that radiolysis of TAIC and subsequent photobleaching cleaved an allyl branch from the ring structure. Upon thermal annealing, an allyl radical on the TAIC molecule was observed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
Resumo:
Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface. (C) 1999 Kluwer Academic Publishers.
Resumo:
The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.
Resumo:
Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.
Resumo:
Effect of additives on the starch gelatinization was governed by the processing conditions. The order-disorder transition of starch in water can occur in more than one way and the effect of polar additives on gelatinization can also be in more than one way. The additives appear to be plasticising thermoplastic starches, resulting in improving rheological properties. The thermoplastic starches with the additives are all biodegradable although the rates of biodegradability are slightly different.
Resumo:
Objective rheological assessment of fluids given to dysphagic patients at mealtime and during videofluoroscopy was carried out using a multicenter format. Thin, quarter-thick, half-thick and full-thick fluids were examined for the degree of correlation between mealtime fluids and their allegedly matched videofluoroscopy counterparts. The study was carried out to determine whether perceived subjective differences between mealtime fluids and videofluoroscopy fluids could be quantified using the rheological parameters of viscosity, density, and yield stress. The results showed poor correlation between mealtime fluids and videofluoroscopy fluids over all parameters. In general, the videofluoroscopy fluids were more viscous, more dense, and showed higher yield stress values than their mealtime counterparts. Given these results, it is reasonable to assume that the fluids used during videofluoroscopy do not provide an accurate indication of swallowing ability at mealtime. Therefore, it is suggested that clinicians use objective methods to theologically match videofluoroscopy fluids to mealtime fluids.
Resumo:
This work addresses the question of whether it is possible to define simple pairwise interaction terms to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice model system one can calculate exact free energies by exhaustive enumeration. A series of approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy terms. Approximating the true free energy with pairwise interactions gives a poor fit with little transferability between systems of different size. Adding extra artificial terms to the approximation yields better fits, but does not improve the ability to generalize from one system size to another. Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free energies. Most usefully, the methodology shows how one can assess the utility of various terms in lattice protein/polymer models. (C) 2001 American Institute of Physics.
Resumo:
The extent of mixing in blends of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) (27% HV) and poly(vinyl acetate) (PVAc) has been measured using a number of different techniques, principally solid-state NMR. Differential scanning calorimetry DSC measurements indicated effective mixing of the polymer chains on a scale of several nanometres. The results of H-1 T-1 and H-1 T-1rho. measurements confirm intimate mixing of the chains. A change on blending in the H-1 T-1rho, and the H-1 NMR line width of the signal from the protons of PVAc was consistent with an increase in the amplitude and frequency of motion of this component. The PVAc chains reside within the inter-lamellar space, as confirmed by spin diffusion measurements after H-1 T-1rho preparation. (C) 2003 Society of Chemical Industry.
Resumo:
Fragile sites appear visually as nonstaining gaps on chromosomes that are inducible by specific cell culture conditions. Expansion of CGG/ CCG repeats has been shown to be the molecular basis of all five folate-sensitive fragile sites characterized molecularly so far, i.e., FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A. In the present study we have refined the localization of the FRA10A folate-sensitive fragile site by fluorescence in situ hybridization. Sequence analysis of a BAC clone spanning FRA10A identified a single, imperfect, but polymorphic CGG repeat that is part of a CpG island in the 5'UTR of a novel gene named FRA10ACl. The number of CGG repeats varied in the population from 8 to 13. Expansions exceeding 200 repeat units were methylated in all FRA10A fragile site carriers tested. The FRA10ACl gene consists of 19 exons and is transcribed in the centromeric direction from the FRA10A repeat. The major transcript of similar to 1450 nt is ubiquitously expressed and codes for a highly conserved protein, FRA10ACl, of unknown function. Several splice variants leading to alternative 3' ends were identified (particularly in testis). These give rise to FRA10ACl proteins with altered COOH-termini. Immunofluorescence analysis of full-length, recombinant EGFP-tagged FRA10ACl protein showed that it was present exclusively in the nucleoplasm. We show that the expression of FRA10A, in parallel to the other cloned folate-sensitive fragile sites, is caused by an expansion and subsequent methylation of an unstable CGG trinucleotide repeat. Taking advantage of three cSNPs within the FRA10ACl gene we demonstrate that one allele of the gene is not transcribed in a FRA10A carrier. Our data also suggest that in the heterozygous state FRA10A is likely a benign folate-sensitive fragile site. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.
Resumo:
A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.
Resumo:
Unloaded microspheres were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(epsilon-caprolactone) (PCL) polymers using the emulsification-solvent evaporation method (EE). The study was conducted to determine the ideal polymeric composition and ideal molecular weight for the microspheres preparation to be used as a Drug Delivery System (DDS) for cancer therapy. In this work, NzPC, a new photosensitizer, has been investigated when incorporated into microspheres of PHBHV/PCL evaluating its application for Photodynamic Therapy (PDT) of neoplastic tissue. The biodegradation studies were conducted to analyze the effects of the incorporation of the NzPC and also to determine the release profiles in vitro condition. We also evaluated the dark toxicity and the photobiological effect of the PHBHV-PCL microspheres in cutaneous melanoma cell line (B-16-A1) used as a biological neoplastic medium.