935 resultados para mechanical stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was to develop mathematical model capable to describe the effect of ultrastructural features on the longitudinal modulus of elasticity of softwood fiber. Another objective was to identify, based on ultrastructural features, a potential explanatory factor for the mechanical difference between Norway spruce and Scots pine fibers and to demonstrate its influence utilizing developed modelling tools. According to the literature, the main difference between the pine and spruce fibers is the pit structure, which is clearly different in these fibers. The spruce fiber contains a lot of tiny pits, whereas the pits of the pine fiber are larger and the total number of them is smaller. The effect of the pits on the longitudinal modulus of elasticity of fiber is studied with both the analytical and the numerical model. The results show that, although the spruce fiber seems to contain clearly more pits, larger pits appearing in the pine fiber turn out to have a stronger influence on the longitudinal modulus of elasticity of the fiber. The effect of local variation of microfibril angle which occurs near the pits seems to be minor. Moreover, the results suggest that spruce fibers may have higher ultimate strength due to the more uniform straining behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ß-adrenergic stimulation with 1.0 µM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 ± 5 vs 158 ± 5, P < 0.0005) and low catalase (7 ± 1 vs 9 ± 1, P < 0.005) and superoxide-dismutase (18 ± 2 vs 27 ± 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) is under the control of an SR protein named phospholamban (PLN). Dephosphorylated PLN inhibits SERCA2a, whereas phosphorylation of PLN at either the Ser16 site by PKA or the Thr17 site by CaMKII reverses this inhibition, thus increasing SERCA2a activity and the rate of Ca2+ uptake by the SR. This leads to an increase in the velocity of relaxation, SR Ca2+ load and myocardial contractility. In the intact heart, ß-adrenoceptor stimulation results in phosphorylation of PLN at both Ser16 and Thr17 residues. Phosphorylation of the Thr17 residue requires both stimulation of the CaMKII signaling pathways and inhibition of PP1, the major phosphatase that dephosphorylates PLN. These two prerequisites appear to be fulfilled by ß-adrenoceptor stimulation, which as a result of PKA activation, triggers the activation of CaMKII by increasing intracellular Ca2+, and inhibits PP1. Several pathological situations such as ischemia-reperfusion injury or hypercapnic acidosis provide the required conditions for the phosphorylation of the Thr17 residue of PLN, independently of the increase in PKA activity, i.e., increased intracellular Ca2+ and acidosis-induced phosphatase inhibition. Our results indicated that PLN was phosphorylated at Thr17 at the onset of reflow and immediately after hypercapnia was established, and that this phosphorylation contributes to the mechanical recovery after both the ischemic and acidic insults. Studies on transgenic mice with Thr17 mutated to Ala (PLN-T17A) are consistent with these results. Thus, phosphorylation of the Thr17 residue of PLN probably participates in a protective mechanism that favors Ca2+ handling and limits intracellular Ca2+ overload in pathological situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area) or strain (any forced change in length in relation to the initial length) and shear stress (the stress component parallel to a given surface). The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis and its consequent fractures are a great social and medical problem mainly occurring in post-menopausal women. Effective forms of prevention and treatment of osteoporosis associated with lower costs and the least side effects are needed. Electrical fields are able to stimulate osteogenesis in fractures, but little is known about their action on osteoporotic tissue. The aim of the present study was to determine by bone densitometry the effects of electrical stimulation on ovariectomized female Wistar rats. Thirty rats (220 ± 10 g) were divided into three groups: sham surgery (SHAM), bilateral ovariectomy (OVX) and bilateral ovariectomy + electrical stimulation (OVX + ES). The OVX + ES group was submitted to a 20-min session of a low-intensity pulsed electrical field (1.5 MHz, 30 mW/cm²) starting on the 7th day after surgery, five times a week (total = 55 sessions). Global, spine and limb bone mineral density were measured by dual-energy X-ray absorptiometry (DXA Hologic 4500A) before surgery and at the end of protocol (84 days after surgery). Electrical stimulation improved (P < 0.05) global (0.1522 ± 0.002), spine (0.1502 ± 0.003), and limb (0.1294 ± 0.003 g/cm²) bone mineral density compared to OVX group (0.1447 ± 0.001, 0.1393 ± 0.002, and 0.1212 ± 0.001, respectively). The OVX + ES group also showed significantly higher global bone mineral content (9.547 ± 0.114 g) when compared to both SHAM (8.693 ± 0.165 g) and OVX (8.522 ± 0.207 g) groups (P < 0.05). We have demonstrated that electrical fields stimulate osteogenesis in ovariectomized female rats. Their efficacy in osteoporosis remains to be demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is dedicated to enhancement and development of a Mechanism in Company X in order to increase its key parameters and approve its workability. Current Mechanism model is described in details. The basis of various analysis, models and theories that are reflecting the working process of the Mechanism are included in the thesis. According to these three directions of enhancements are chosen: from mechanical, tribological and conceptual points of view. As the result the list of improvements is presented. The new models of Mechanism are built. The efficiency and lifetime value are obtained in accordance with corresponding estimations. The comparative analysis confirms the necessity of conducted changes. Recommendations for the Company X specialists are represented in the thesis. Proposals for deeper research are also suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 µmol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 ± 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 ± 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 ± 0.06%, which is less than that reported in the literature (0.82 ± 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since streptozotocin (STZ)-induced diabetes is a widely used model of painful diabetic neuropathy, the aim of the present study was to design a rational protocol to investigate whether the development of mechanical hypernociception induced by STZ depends exclusively on hyperglycemia. Male Wistar rats (180-200 g; N = 6-7 per group) received a single intravenous injection of STZ at three different doses (10, 20, or 40 mg/kg). Only the higher dose (40 mg/kg) induced a significant increase in blood glucose levels, glucose tolerance and deficiency in weight gain. However, all STZ-treated rats (hyperglycemic or not) developed persistent (for at least 20 days) and indistinguishable bilateral mechanical hypernociception that was not prevented by daily insulin treatment (2 IU twice a day, sc). Systemic morphine (2 mg/kg) but not local (intraplantar) morphine treatment (8 µg/paw) significantly inhibited the mechanical hypernociception induced by STZ (10 or 40 mg/kg). In addition, intraplantar injection of STZ at doses that did not cause hyperglycemia (30, 100 or 300 µg/paw) induced ipsilateral mechanical hypernociception for at least 8 h that was inhibited by local and systemic morphine treatment (8 µg/paw or 2 mg/kg, respectively), but not by dexamethasone (1 mg/kg, sc). The results of this study demonstrate that systemic administration of STZ induces mechanical hypernociception that does not depend on hyperglycemia and intraplantar STZ induces mechanical sensitization of primary sensory neurons responsive to local morphine treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial fibrillation (AF) affects subjects with Chagas' disease and is an indicator of poor prognosis. We investigated clinical, echocardiographic and electrocardiographic variables of Chagas' disease in a long-term longitudinal study as predictors of a new-onset AF episode lasting >24 h, nonfatal embolic stroke and cardiac death. Fifty adult outpatients (34 to 74 years old, 62% females) staged according to the Los Andes classification were enrolled. During a follow-up of (mean ± SD) 84.2 ± 39.0 months, 9 subjects developed AF (incidence: 3.3 ± 1.0%/year), 5 had nonfatal stroke (incidence: 1.3 ± 1.0%/year), and nine died (mortality rate: 2.3 ± 0.8%/year). The progression rate of left ventricular mass and left ventricular ejection fraction was significantly greater in subjects who experienced AF (16.4 ± 20.0 g/year and -8.6 ± 7.6%/year, respectively) than in those who did not (8.2 ± 8.4 g/year; P = 0.03, and -3.0 ± 2.5%/year; P = 0.04, respectively). In univariate analysis, left atrial diameter ≥3.2 cm (P = 0.002), pulmonary arterial hypertension (P = 0.035), frequent premature supraventricular and ventricular contraction counts/24 h (P = 0.005 and P = 0.007, respectively), ventricular couplets/24 h (P = 0.002), and ventricular tachycardia (P = 0.004) were long-term predictors of AF. P-wave signal-averaged ECG revealed a limited long-term predictive value for AF. In chronic Chagas' disease, large left atrial diameter, pulmonary arterial hypertension, frequent supraventricular and ventricular premature beats, and ventricular tachycardia are long-term predictors of AF. The rate of left ventricular mass enlargement and systolic function deterioration impact AF incidence in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.