750 resultados para mechanical stiffness
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium alloys normally contain oxygen, nitrogen, or carbon as impurities, and although this concentration is low, these impurities cause changes in the mechanical properties of Ti alloys. Oxygen is a strong alpha-phase stabilizer and its addition causes solid-solution strengthening, shape memory effect, and superelasticity. The most promising alloys are those with Nb, Zr, Ta, and Mo as alloying elements. In this paper, the preparation, processing, and characterization of Ti-Mo alloys (5 and 10 wt%) used as biomaterials are presented, along with the influence of oxygen on their mechanical properties. The addition of oxygen causes an increase in the elasticity modulus of the Ti-5Mo alloy due to an increase in the alpha' phase volume fraction, which possesses a higher modulus than the alpha '' phase. Ti-10Mo possesses a mixture between alpha '' and beta phases, oxygen enters these two structures and causes a dominating effect.
Resumo:
The scientific and technological development in the area of new materials contributed to several applications of niobium and its alloys in nuclear power plants as well as in aerospace, aeronautics, automobile and naval industries. This paper presents the interstitial diffusion coefficients of nitrogen in solid solution in the Nb-1.0wt%Zr alloy using internal friction measurements obtained by mechanical spectroscopy, which uses a torsion pendulum operating at an oscillation frequency between 1.0 Hz and 10.0 Hz. The temperature range varies from 300K to 700K, at a heating rate of 1 K/min and vacuum better than 2 x 10(-6) Torr. The results showed an increase of the interstitial diffusion coefficient of nitrogen that was correlated with configurational considerations for the octahedral interstitials.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
When metals that present bcc crystalline structure receive the addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, they undergo significant changes in their physical properties because they are able to dissolve great amounts of those interstitial elements, and thus form solid solutions. Niobium and most of its alloys possess a bcc crystalline structure and, because Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this study, mechanical spectroscopy (internal friction) measurements were performed on Nb-8.9wt%Ta alloys containing oxygen in solid solution. The experimental results presented complex internal friction spectra. With the addition of substitutional solute, interactions between the two types of solutes (substitutional and interstitial) were observed, considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for oxygen in this alloy.
Resumo:
Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.
Resumo:
The compound SmBa(2)Cu(3)O(7-delta) (SBCO)-obtained by substituting rare-earth Sm for Y in the well-known and most studied YBa(2)Cu(3)O(6+delta) (YBCO)-is potentially attractive to study in order to understand the superconductivity mechanism in physics and in electronic device applications. For SBCO, the possibility of variable stoichiometry and the high mobility of oxygen in CuO(x) planes give rise to a rich phase diagram. This study reports on the effect of heat treatments in an oxygen atmosphere on the anelastic properties of this oxide, in which relaxation processes were observed, attributed to oxygen atom jumps present in the Cu-O planes during the orthorhombic phase.
Resumo:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurements were performed in Nb-2.0wt%Ti alloys containing nitrogen in solid solution. The experimental results presented complex internal friction spectra and with the addition of substitutional solute, it was observed interactions between the two types of solutes (substitutional and interstitial), considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for nitrogen in the Nb-2.0wt%Ti alloys.
Resumo:
Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.