904 resultados para mechanical contact
Resumo:
Atrial fibrillation (AF) affects subjects with Chagas' disease and is an indicator of poor prognosis. We investigated clinical, echocardiographic and electrocardiographic variables of Chagas' disease in a long-term longitudinal study as predictors of a new-onset AF episode lasting >24 h, nonfatal embolic stroke and cardiac death. Fifty adult outpatients (34 to 74 years old, 62% females) staged according to the Los Andes classification were enrolled. During a follow-up of (mean ± SD) 84.2 ± 39.0 months, 9 subjects developed AF (incidence: 3.3 ± 1.0%/year), 5 had nonfatal stroke (incidence: 1.3 ± 1.0%/year), and nine died (mortality rate: 2.3 ± 0.8%/year). The progression rate of left ventricular mass and left ventricular ejection fraction was significantly greater in subjects who experienced AF (16.4 ± 20.0 g/year and -8.6 ± 7.6%/year, respectively) than in those who did not (8.2 ± 8.4 g/year; P = 0.03, and -3.0 ± 2.5%/year; P = 0.04, respectively). In univariate analysis, left atrial diameter ≥3.2 cm (P = 0.002), pulmonary arterial hypertension (P = 0.035), frequent premature supraventricular and ventricular contraction counts/24 h (P = 0.005 and P = 0.007, respectively), ventricular couplets/24 h (P = 0.002), and ventricular tachycardia (P = 0.004) were long-term predictors of AF. P-wave signal-averaged ECG revealed a limited long-term predictive value for AF. In chronic Chagas' disease, large left atrial diameter, pulmonary arterial hypertension, frequent supraventricular and ventricular premature beats, and ventricular tachycardia are long-term predictors of AF. The rate of left ventricular mass enlargement and systolic function deterioration impact AF incidence in this population.
Resumo:
We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.
Resumo:
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
Resumo:
Patients undergoing neurosurgery are predisposed to a variety of complications related to mechanical ventilation (MV). There is an increased incidence of extubation failure, pneumonia, and prolonged MV among such patients. The aim of the present study was to assess the influence of extubation failure and prolonged MV on the following variables: postoperative pulmonary complications (PPC), mortality, reoperation, tracheostomy, and duration of postoperative hospitalization following elective intra-cranial surgery. The study involved a prospective observational cohort of 317 patients submitted to elective intracranial surgery for tumors, aneurysms and arteriovenous malformation. Preoperative assessment was performed and patients were followed up for the determination of extubation failure and prolonged MV (>48 h) until discharge from the hospital or death. The occurrence of PPC, incidence of death, the need for reoperation and tracheostomy, and the length of hospitalization were assessed during the postoperative period. Twenty-six patients (8.2%) experienced extubation failure and 30 (9.5%) needed prolonged MV after surgery. Multivariate analysis showed that extubation failure was significant for the occurrence of death (OR = 8.05 [1.88; 34.36]), PPC (OR = 11.18 [2.27; 55.02]) and tracheostomy (OR = 7.8 [1.12; 55.07]). Prolonged MV was significant only for the occurrence of PPC (OR = 4.87 [1.3; 18.18]). Elective intracranial surgery patients who experienced extubation failure or required prolonged MV had a higher incidence of PPC, reoperation and tracheostomy and required a longer period of time in the ICU. Level of consciousness and extubation failure were associated with death and PPC. Patients who required prolonged MV had a higher incidence of extubation failure.
Resumo:
Contact force (CF) sensing technology allows real-time monitoring during catheter ablation for atrial fibrillation (AF). However, the effect of CF sensing technology on procedural parameters and clinical outcomes still needs clarification. Because of the inconsistent results thus far in this area, we performed a meta-analysis to determine whether CF sensing technology can improve procedural parameters and clinical outcomes for the treatment of AF. Studies examining the benefits of CF sensing technology were identified in English-language articles by searching the MEDLINE, Web of Science, and Cochrane Library databases (inception to May 2015). Ten randomized, controlled trials involving 1834 patients (1263 males, 571 females) were included in the meta-analysis (681 in the CF group, 1153 in the control group). Overall, the ablation time was significantly decreased by 7.34 min (95%CI=-12.21 to -2.46; P=0.003, Z test) in the CF group compared with the control group. CF sensing technology was associated with significantly improved freedom from AF after 12 months (OR=1.55, 95%CI=1.20 to 1.99; P=0.0007) and complications were significantly lower in the CF group than in the control group (OR=0.50, 95%CI=0.29 to 0.87; P=0.01). However, fluoroscopy time analysis showed no significantly decreased trend associated with CF-guided catheter ablation (weighted mean difference: -2.59; 95%CI=-9.06 to 3.88; P=0.43). The present meta-analysis shows improvement in ablation time and freedom from AF after 12 months in AF patients treated with CF-guided catheter ablation. However, CF-guided catheter ablation does not decrease fluoroscopy time.
Resumo:
A preliminary analysis by GC-MS comparing the mass spectrum of the compounds with the Wiley 275 L mass spectral data base was used to identify the fatty acids and mainly, some volatile compounds responsible for the flavor of the roasted coffee oil. The oil was obtained by mechanical expelling of Brazilian beans (Coffea arabica) roasted at 238ºC for 10 minutes. Different sample preparation methodologies such as headspace, adsorbent suction trapping and esterification were used. It was possible to identify pyrazines, pyridines, furan derivatives and other compounds not reported in the literature.
Resumo:
Experiments were carried out to determine the properties of the welded joints in 8mm thick high-strength steels produced by quenching and tempering and thermomechanical rolling with accelerated cooling (tensile strength 821–835 MPa). The dependence of the strength, elongation, hardness, impact energy and crack opening displacement on the heat input in the range 1.0–0.7 kJ mm21 was determined. The results show that the dependence of the strength of the welded joints decreases and that of the elongation increases. The heat input has only a slight effect on the impact energy and crack opening displacement in the heat-affected zone.
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
The efficiency of four Sanitizers - peracetic acid, chlorhexidine, quaternary ammonium, and organic acids - was tested in this work using different bacteria recognized as a problem to meat industry, Salmonella sp., S. aureus, E. coli and L. monocytogenes. The effects of sanitizer concentration (0.2, 0.5, 0.6, 1.0, 1.1 and 1.4%), at different temperatures (10 and 45 °C) and contact time (2, 10, 15, 18 and 25 minutes) were evaluated. Tests in an industrial plant were also carried out considering previously obtained results. In a general way, peracetic acid presented higher efficiencies using low concentration (0.2%) and contact time (2 minutes) at 10 °C. The tests performed in industrial scale showed that peracetic acid presented a good performance in concentration and contact time lower than that suggested by the suppliers. The use of chlorhexidine and quaternary ammonium led to reasonable results at the indicated conditions, and organic acids were ineffective under concentration and contact time higher than those indicated by the suppliers in relation to Staphylococcus aureus. The results, in general, show that the choice for the most adequate sanitizer depends on the microorganism contaminant, the time available for sanitizer application, and also on the process cost.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.
Resumo:
This study aimed at evaluating the effect of different concentrations of hydrolyzed collagen (HC) on the properties of an orally disintegrating film containing propolis ethanol extract (PEE) as an active component. The films were evaluated in terms of total phenols, mechanical properties, solubility, contact angle, disintegration time, and microstructure. The films were prepared by casting with 2 g of protein mass (gelatin and HC), 30 g of sorbitol/100 g of protein mass, and 100 g of PEE/100 g of protein mass. HC was incorporated at concentrations of 0, 10, 20, and 30 g/100 g of protein mass. It was found that increased concentrations of HC reduced tensile strength and increased elongation; however, all films showed plastic behavior. An increase in solubility at 25 ºC, a reduction in the contact angle, and disintegration time were also observed. Thus, higher concentrations of collagen led to more hydrophilic and more soluble polymeric matrices that showed shorter dissolution time, favoring the use of these materials as carriers for active compounds to be delivered in the oral cavity.
Resumo:
Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.