874 resultados para mass effects
Resumo:
We calculate the electron exchange coupling for a phosphorus donor pair in silicon perturbed by a J-gate potential and the boundary effects of the silicon host geometry. In addition to the electron-electron exchange interaction we also calculate the contact hyperfine interaction between the donor nucleus and electron as a function of the varying experimental conditions. Donor separation, depth of the P nuclei below the silicon oxide layer and J-gate voltage become decisive factors in determining the strength of both the exchange coupling and hyperfine interaction-both crucial components for qubit operations in the Kane quantum computer. These calculations were performed using an anisotropic effective-mass Hamiltonian approach. The behaviour of the donor exchange coupling as a function of the parameters varied in this work provides relevant information for the experimental design of these devices.
Resumo:
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A new, fast, continuous flow technique is described for the simultaneous determination of 633 S and delta(34)S using SO masses 48, 49 and 50. Analysis time is similar to5min/sample with measurement precision and accuracy better than +/-0.3parts per thousand. This technique, which has been set up using IAEA Ag2S standards S-1, S-2 and S-3, allows for the fast determination of mass-dependent or mass-independent fractionation (MIF) effects in sulfide, organic sulfur samples and possibly sulfate. Small sample sizes can be analysed directly, without chemical pre-treatment. Robustness of the technique for natural versus artificial standards was demonstrated by analysis of a Canon Diablo troilite, which gave a delta(33)S of 0.04parts per thousand and a delta(34)S of -0.06parts per thousand compared to the values obtained for S-1 of 0.07parts per thousand and -0.20parts per thousand, respectively. Two pyrite samples from a banded-iron formation from the 3710 Ma Isua Greenstone Belt were analysed using this technique and yielded MIF (Delta(33)S of 2.45 and 3.31parts per thousand) comparable to pyrite previously analysed by secondary ion probe. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Frog jumping is an excellent model system for examining the structural basis of interindividual variation in burst locomotor performance. Some possible factors that affect jump performance, such as total body size, hindlimb length, muscle mass, and muscle mechanical and biochemical properties, were analysed at the interindividual (intraspecies) level in the tree frog Hyla multilineata. The aim of this study was to determine which of these physiological and anatomical variables both vary between individuals and are correlated with interindividual variation in jump performance. The model produced via stepwise linear regression analysis of absolute data suggested that 62% of the interindividual variation in maximum jump distance could be explained by a combination of interindividual variation in absolute plantaris muscle mass, total hindlimb muscle mass ( excluding plantaris muscle), and pyruvate kinase activity. When body length effects were removed, multiple regression indicated that the same independent variables explained 43% of the residual interindividual variation in jump distance. This suggests that individuals with relatively large jumping muscles and high pyruvate kinase activity for their body size achieved comparatively large maximal jump distances for their body size.
Resumo:
Weight reduction in clinical populations of severely obese children has been shown to have beneficial effects on blood pressure, but little is known about the effect of weight gain among children in the general population. This study compares the mean blood pressure at 14 years of age with the change in overweight status between ages 5 and 14. Information from 2794 children born in Brisbane, Australia, and who were followed up since birth and had body mass index (BMI) and blood pressure measurements at ages 5 and 14 were used. Systolic and diastolic blood pressure at age 14 was the main outcomes and different patterns of change in BMI from age 5 to 14 were the main exposure. Those who changed from being overweight at age 5 to having normal BMI at age 14 had similar mean blood pressures to those who had a normal BMI at both time points: age- and sex-adjusted mean difference in systolic blood pressure 1.54 ( - 0.38, 3.45) mm Hg and in diastolic blood pressure 0.43 ( - 0.95, 1.81) mm Hg. In contrast, those who were overweight at both ages or who had a normal BMI at age 5 and were overweight at age 14 had higher blood pressure at age 14 than those who had a normal BMI at both times. These effects were independent of a range of potential confounding factors. Our findings suggest that programs that successfully result in children changing from overweight to normal-BMI status for their age may have important beneficial effects on subsequent blood pressure.
Resumo:
Objective: To demonstrate the utility of a practical measure of lean mass for monitoring changes in the body composition of athletes. Methods: Between 1999 and 2003 body mass and sum of seven skinfolds were recorded for 40 forwards and 32 backs from one Super 12 rugby union franchise. Players were assessed on 13 (7) occasions ( mean (SD)) over 1.9 (1.3) years. Mixed modelling of log transformed variables provided a lean mass index (LMI) of the form mass/skinfolds(x), for monitoring changes in mass controlled for changes in skinfold thickness. Mean effects of phase of season and time in programme were modelled as percentage changes. Effects were standardised for interpretation of magnitudes. Results: The exponent x was 0.13 for forwards and 0.14 for backs ( 90% confidence limits +/- 0.03). The forwards had a small decrease in skinfolds ( 5.3%, 90% confidence limits +/- 2.2%) between preseason and competition phases, and a small increase ( 7.8%, 90% confidence limits +/- 3.1%) during the club season. A small decrease in LMI (similar to 1.5%) occurred after one year in the programme for forwards and backs, whereas increases in skinfolds for forwards became substantial (4.3%, 90% confidence limits +/- 2.2%) after three years. Individual variation in body composition was small within a season (within subject SD: body mass, 1.6%; skinfolds, 6.8%; LMI, 1.1%) and somewhat greater for body mass (2.1%) and LMI (1.7%) between seasons. Conclusions: Despite a lack of substantial mean changes, there was substantial individual variation in lean mass within and between seasons. An index of lean mass based
Resumo:
Bird feeding on residential property is a popular activity throughout Western countries. Advocates insist the practice is beneficial, while opponents maintain that it can result in a wide range of negative outcomes including malnutrition. The biological effects of 'backyard feeding' were studied in Australian magpies Gymnorhina tibicen during the non-breeding season in 1999 in the Greater Brisbane and the Lockyer Valley regions, south-east Queensland, Australia. Six magpie populations were selected and 70 birds were individually tagged for identification. The birds were provided with processed foods, 20-40 g per bird daily. To monitor the effects of the food, blood chemistry and body mass (BM) were used as indices. Significant effects were observed in BM and plasma cholesterol (PC), showing strong sensitivity to food provisioning. Significant effects on PC and uric acid were found only when birds were fed dog sausage. Results suggest that blood PC levels in magpies are readily influenced by, probably, the lipids present in food, and that the type of food can affect blood PC levels. These effects may occur widely among fed magpies if the influence that we demonstrated at plasma level can be generalized. Following the free-ranging study, six magpies were captured and subjected to a 6-day captive experiment to determine whether the selected foods had the potential to alter the birds' blood chemistry. It was found that all of the foods, when provided ad libitum, influence at least two of the three blood parameters (PC and non-esterified fatty acids). Due to its popularity, wildlife feeding will continue. To make wildlife-feeding activities truly sustainable, there is a need for further studies. This study clearly demonstrated that the physiology of wild magpies can be affected by 'backyard feeding'.
Resumo:
Sugarcane grown in the Ord River district of Western Australia has lower sucrose content than expected from earlier trials and experience in other irrigated districts. High temperatures have been hypothesised as a possible cause. The effects of high temperature (above 32 degrees C) on growth and carbon partitioning were investigated. A temperature regime of (25-38 degrees C) was compared with (23-33 degrees C). In one experiment, 7-month-old plants of cvv. Q117 and Q158 were subjected to the treatments for 2 months. In another experiment, the plants were allowed to regrow (ratoon) for 6 months. In both experiments, the higher temperature resulted in more, shorter internodes and higher moisture content. Most internodes from plants in the higher temperature treatment had lower sucrose content than internodes from the lower temperature. On a dry mass basis the internodes from the plants in the higher temperature had proportionately more fibre and hexoses but lower sucrose. Combined with an increased number of nodes in a stem of similar or shorter length this would result in higher stalk fibre and lower sucrose content. The data provided evidence that sugarcane partitions less carbon to stored sucrose when grown under high compared with low temperatures. The two cultivars partitioned carbon between soluble (sugars) and insoluble (fibre) fractions to different degrees. These experiments also indicate that the current models describing leaf appearance and perhaps sugarcane growth at temperatures above 32 degrees C, in general, need revision.
Resumo:
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific facose and/or galactose residues.
Resumo:
Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To determine whether a significant relationship exists between fat mass (FM) development and physical activity (PA) and/or sugar-sweetened drink (SD) consumption in healthy boys and girls aged 8-19 yr. Methods: A total of 105 males and 103 females were assessed during childhood and adolescence for a maximum of 7 yr and a median of 5 yr. Height was measured biannually. Fat-free mass (FFM) and FM were assessed annually by dual x-ray absorptiometry (DXA). PA was evaluated two to three times annually using the PAQ-C/A. Energy intake and SD were assessed using a 24-h dietary intake questionnaire also completed two to three times per year. Years from peak height velocity were used as a biological maturity age indicator. Multilevel random effects models were used to test the relationship. Results: When controlling for maturation, FFM, and energy intake adjusted for SD, PA level was negatively related to FM development in males (P < 0.05) but not in females (P > 0.05). In contrast, there was no relationship between SD and FM development of males or females (P > 0.05). There was also no interaction effect between SD and PA (P > 0.05) with FM development. Conclusion: This finding tends support to the idea that increasing PA in male youths aids in the control of FM development. Models employed showed no relationship between SD and FM in either gender.
Resumo:
Experiments to design physical activity programs that optimize their osteogenic potential are difficult to accomplish in humans. The aim of this article is to review the contributions that animal studies have made to knowledge of the loading conditions that are osteogenic to the skeleton during growth, as well as to consider to what extent animal studies fail to provide valid models of physical activity and skeletal maturation. Controlled loading studies demonstrate that static loads are ineffective, and that bone formation is threshold driven and dependent on strain rate, amplitude, and duration of loading. Only a few loading cycles per session are required, and distributed bouts are more osteogenic than sessions of long duration. Finally, animal models fail to inform us of the most appropriate ways to account for the variations in biological maturation that occur in our studies of children and adolescents, requiring the use of techniques for studying human growth and development.
Resumo:
Purpose: To examine the effect of progressive resistance training on muscle function, functional performance, balance, body composition, and muscle thickness in men receiving androgen deprivation for prostate cancer. Methods: Ten men aged 59-82 yr on androgen deprivation for localized prostate cancer undertook progressive resistance training for 20 wk at 6- to 12-repetition maximum (RM) for 12 upper- and lower-body exercises in a university exercise rehabilitation clinic. Outcome measures included muscle strength and muscle endurance for the upper and lower body, functional performance (repeated chair rise, usual and fast 6-m walk, 6-m backwards walk, stair climb, and 400-m walk time), and balance by sensory organization test. Body composition was measured by dual-energy x-ray absorptiometry and muscle thickness at four anatomical sites by B-mode ultrasound. Blood samples were assessed for prostate specific antigen (PSA), testosterone, growth hormone (GH), cortisol, and hemoglobin. Results: Muscle strength (chest press, 40.5%; seated row, 41.9%; leg press, 96.3%; P < 0.001) and muscle endurance (chest press, 114.9%; leg press, 167.1%; P < 0.001) increased significantly after training. Significant improvement (P < 0.05) occurred in the 6-m usual walk (14.1%), 6-m backwards walk (22.3%), chair rise (26.8%), stair climbing (10.4%), 400-m walk (7.4%), and balance (7.8%). Muscle thickness increased (P < 0.05) by 15.7% at the quadriceps site. Whole-body lean mass was preserved with no change in fat mass. There were no significant changes in PSA, testosterone, GH, cortisol, or hemoglobin. Conclusions: Progressive resistance exercise has beneficial effects on muscle strength, functional performance and balance in older men receiving androgen deprivation for prostate cancer and should be considered to preserve body composition and reduce treatment side effects.
Resumo:
Objective-To determine effects of early intensive postoperative physiotherapy on limb function in dogs after tibial plateau leveling osteotomy (TPLO) for deficiency of the cranial cruciate ligament (CCL). Animals-8 adult dogs with CCL deficiency. Procedure-After TPLO, dogs underwent a physiotherapy program 3 times/wk (physiotherapy group; n = 4) or a walking program (home-exercise group; 4). All dogs were evaluated before surgery, 1 and 10 days after surgery, and 3 and 6 weeks after surgery. Thigh circumference (TC), stifle joint flexion and extension range of motion (ROM), lameness, and weight-bearing scores were recorded. Results-Before surgery, CCL-deficient limbs had significantly reduced TC and reduced flexion and extension ROMs, compared with values for the contralateral control limb. Six weeks after TPLO, the physiotherapy group had significantly larger TC than the home-exercise group, with the difference no longer evident between the affected and nonaffected limbs. Extension and flexion ROMs were significantly greater in the physiotherapy group, compared with values for the home-exercise group, 3 and 6 weeks after surgery. Six weeks after surgery, the difference in flexion and extension ROMs was no longer evident between the affected and nonaffected limbs in the physiotherapy group. Both groups had improvements for lameness and weight-bearing scores over time, but no difference was found between the 2 groups. Conclusions and Clinical Relevance-After TPLO in CCL-deficient dogs, early physiotherapy intervention should be considered as part of the postoperative management to prevent muscle atrophy, build muscle mass and strength, and increase stifle joint flexion and extension ROMs.
Resumo:
The aim was to investigate whether the addition of supervised high intensity progressive resistance training to a moderate weight loss program (RT+WLoss) could maintain bone mineral density (BMD) and lean mass compared to moderate weight loss (WLoss) alone in older overweight adults with type 2 diabetes. We also investigated whether any benefits derived from a supervised RT program could be sustained through an additional home-based program. This was a 12-month trial in which 36 sedentary, overweight adults aged 60 to 80 years with type 2 diabetes were randomized to either a supervised gymnasium-based RT+WLoss or WLoss program for 6 months (phase 1). Thereafter, all participants completed an additional 6-month home-based training without further dietary modification (phase 2). Total body and regional BMD and bone mineral content (BMC), fat mass (FM) and lean mass (LM) were assessed by DXA every 6 months. Diet, muscle strength (1-RM) and serum total testosterone, estradiol, SHBG, insulin and IGF-1 were measured every 3 months. No between group differences were detected for changes in any of the hormonal parameters at any measurement point. In phase 1, after 6 months of gymnasium-based training, weight and FM decreased similarly in both groups (P < 0.01), but LM tended to increase in the RT+WLoss (n=16) relative to the WLoss (n = 13) group [net difference (95% CI), 1.8% (0.2, 3.5), P < 0.05]. Total body BMD and BMC remained unchanged in the RT+WLoss group, but decreased by 0.9 and 1.5%, respectively, in the WLoss group (interaction, P < 0.05). Similar, though non-significant, changes were detected at the femoral neck and lumbar spine (L2-L4). In phase 2, after a further 6 months of home-based training, weight and FM increased significantly in both the RT+WLoss (n = 14) and WLoss (n = 12) group, but there were no significant changes in LM or total body or regional BMD or BMC in either group from 6 to 12 months. These results indicate that in older, overweight adults with type 2 diabetes, dietary modification should be combined with progressive resistance training to optimize the effects on body composition without having a negative effect on bone health.