933 resultados para macroscopic traffic flow models
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. Whereas the paper Alt et al. is focused on the experiments in the present paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.
Resumo:
A combination of the two-fluid and drift flux models have been used to model the transport of fibrous debris. This debris is generated during loss of coolant accidents in the primary circuit of pressurized or boiling water nuclear reactors, as high pressure steam or water jets can damage adjacent insulation materials including mineral wool blankets. Fibre agglomerates released from the mineral wools may reach the containment sump strainers, where they can accumulate and compromise the long-term operation of the emergency core cooling system. Single-effect experiments of sedimentation in a quiescent rectangular column and sedimentation in a horizontal flow are used to verify and validate this particular application of the multiphase numerical models. The utilization of both modeling approaches allows a number of pseudocontinuous dispersed phases of spherical wetted agglomerates to be modeled simultaneously. Key effects on the transport of the fibre agglomerates are particle size, density and turbulent dispersion, as well as the relative viscosity of the fluid-fibre mixture.
Resumo:
We consider a model of overall telecommunication network with virtual circuits switching, in stationary state, with Poisson input flow, repeated calls, limited number of homogeneous terminals and 8 types of losses. One of the main problems of network dimensioning/redimensioning is estimation of traffic offered in network because it reflects on finding of necessary number of circuit switching lines on the basis of the consideration of detailed users manners and target Quality of Service (QoS). In this paper we investigate the behaviour of the traffic offered in a network regarding QoS variables: “probability of blocked switching” and “probability of finding B-terminals busy”. Numerical dependencies are shown graphically. A network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. International Journal "Information Technologies and Knowledge" Vol.2 / 2008 174 The received results make the network dimensioning/redimensioning, based on QoS requirements easily, due to clearer understanding of important variables behaviour. The described approach is applicable directly for every (virtual) circuit switching telecommunication system e.g. GSM, PSTN, ISDN and BISDN. For packet - switching networks, at various layers, proposed approach may be used as a comparison basis and when they work in circuit switching mode (e.g. VoIP).
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.
Resumo:
The popular technologies Wi-Fi and WiMAX for realization of WLAN and WMAN respectively are much different, but they could compliment each other providing competitive wireless access for voice traffic. The article develops the idea of WLAN/WMAN (Wi-Fi/WiMAX) integration. WiMAX is offering a backup for the traffic overflowing from Wi-Fi cells located into the WiMAX cell. Overflow process is improved by proposed rearrangement control algorithm applied to the Wi-Fi voice calls. There are also proposed analytical models for system throughput evaluation and verification of the effectiveness using WMAN as a backup for WLAN overflow traffic and the proposed call rearrangement algorithm as well.
Resumo:
Many practical routing algorithms are heuristic, adhoc and centralized, rendering generic and optimal path configurations difficult to obtain. Here we study a scenario whereby selected nodes in a given network communicate with fixed routers and employ statistical physics methods to obtain optimal routing solutions subject to a generic cost. A distributive message-passing algorithm capable of optimizing the path configuration in real instances is devised, based on the analytical derivation, and is greatly simplified by expanding the cost function around the optimized flow. Good algorithmic convergence is observed in most of the parameter regimes. By applying the algorithm, we study and compare the pros and cons of balanced traffic configurations to that of consolidated traffic, which provides important implications to practical communication and transportation networks. Interesting macroscopic phenomena are observed from the optimized states as an interplay between the communication density and the cost functions used. © 2013 IEEE.
Resumo:
Next-generation networks are likely to be non-uniform in all their aspects, including number of lightpaths carried per link, number of wavelengths per link, number of fibres per link, asymmetry of the links, and traffic flows. Routing and wavelength allocation models generally assume that the optical network is uniform and that the number of wavelengths per link is a constant. In practice however, some nodes and links carry heavy traffic and additional wavelengths are needed in those links. We study a wavelength-routed optical network based on the UK JANET topology where traffic demands between nodes are assumed to be non-uniform. We investigate how network capacity can be increased by locating congested links and suggesting cost-effective upgrades. Different traffic demands patterns, hop distances, number of wavelengths per link, and routing algorithms are considered. Numerical results show that a 95% increase in network capacity is possible by overlaying fibre on just 5% of existing links. We conclude that non-uniform traffic allocation can be beneficial to localize traffic in nodes and links deep in the network core and provisioning of additional resources there can efficiently and cost-effectively increase network capacity. © 2013 IEEE.
Resumo:
This paper presents the development of a modelling study for part of the Birmingham area. Restricted access and model resolutions have limited wide applications of some of the previously developed models. The study area covers approximately 221 km2, and is underlain geologically, by a multi-layer setup with varied hydraulic properties. The basal aquifer unit is the Kidderminster sandstone Formation, overlain by the Wildmoor and Bromsgrove sandstone Formations. The presence of the Birmingham fault which acts as low permeability barrier demarcates the eastern and southern boundaries. The western boundary is defined by the presence of crystallised rocks and coal measures, while a groundwater divide defines the northern boundary. The estimated recharge flux is 112 mm/yr. The ranges of calibrated values obtained for horizontal and vertical hydraulic conductivities are 5.787x10-6 - 2.315x10-5 m/s and 5.787x10-8 - 1.157x10-7 m/s, respectively. Corresponding values obtained for the specific yield and specific storage are 0.10 - 0.12, and 1x10 -4 - 5x10 -4. The calculated numerical error is generally much less than 0.1 %. Hydraulic layering within the Permo-Triassic sandstone aquifer is thought to account for the large vertical anisotropy. Although, uncertainties are associated with the use of a simplistic delay approach to characterise the effects of the unsaturated zone, the modelled values are comparable with those obtained in the literature, and the flow pattern predictions appear to be realistic. © Research India Publications.
Resumo:
This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.
Resumo:
A szerző a tisztán elméleti célokra kifejlesztett Neumann-modellt és a gyakorlati alkalmazások céljára kifejlesztett Leontief-modellt veti össze. A Neumann-modell és a Leontief-modell éves termelési periódust feltételező, zárt, stacionárius változatának hasonló matematikai struktúrája azt a feltételezést sugallja, hogy az utóbbi a Neumann-modell sajátos eseteként értelmezhető. Az egyes modellek közgazdasági tartalmát és feltevéseit részletesen kibontva és egymással összevetve a szerző megmutatja, hogy a fenti következtetés félrevezető, két merőben különböző modellről van szó, nem lehet az egyikből a másikat levezetni. Az ikertermelés és technológiai választék lehetősége a Neumann-modell elengedhetetlen feltevése, az éves termelési periódus feltevése pedig kizárja folyam jellegű kibocsátások explicit figyelembevételét. Mindezek feltevések ugyanakkor idegenek a Leontief-modelltől. A két modell valójában egy általánosabb állomány–folyam jellegű zárt, stacionárius modell sajátos esete, méghozzá azok folyamváltozókra redukált alakja. _____ The paper compares the basic assumptions and methodology of the Von Neumann model, developed for purely abstract theoretical purposes, and those of the Leontief model, designed originally for practical applications. Study of the similar mathematical structures of the Von Neumann model and the closed, stationary Leontief model, with a unit length of production period, often leads to the false conclusion that the latter is just a simplified version of the former. It is argued that the economic assumptions of the two models are quite different, which makes such an assertion unfounded. Technical choice and joint production are indispensable features of the Von Neumann model, and the assumption of unitary length of production period excludes the possibility of taking service flows explicitly into account. All these features are completely alien to the Leontief model, however. It is shown that the two models are in fact special cases of a more general stock-flow stationary model, reduced to forms containing only flow variables.
Resumo:
Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^