926 resultados para low-temperature epitaxy
Resumo:
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.
Resumo:
The phosphine-stabilised gold cluster [Au6(Ph2P-o-tolyl)6](NO3)2 is converted into an active nanocatalyst for the oxidation of benzyl alcohol through low-temperature peroxide-assisted removal of the phosphines, avoiding the high-temperature calcination process. The process was monitored using in-situ X-ray absorption spectroscopy, which revealed that after a certain period of the reaction with tertiary butyl hydrogen peroxide, the phosphine ligands are removed to form nanoparticles of gold which matches with the induction period seen in the catalytic reaction. Density functional theory calculations show that the energies required to remove the ligands from the [Au6Ln]2+ increase significantly with successive removal steps, suggesting that the process does not occur at once but sequentially. The calculations also reveal that ligand removal is accompanied by dramatic re-arrangements in the topology of the cluster core.
Resumo:
In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.
Resumo:
A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [nBu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV–vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO22+. NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4– is delocalized over all NCS– ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8]4– (An = Th, U) and [UO2(NCS)5]3– has been explored by a combination of DFT and QTAIM analysis, and the U–N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)–NCS ion is more ionic than what was found for U(IV)–Cl complexes.
Resumo:
The metal–insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (a) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12:5% 6 a 6 20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that a ¼ 10% is the best possible choice for spin-polarized VO2 calculations.
Resumo:
The self-consistent spin-polarized band-structure calculation of ferromagnetic compound MnBiAl in its low-temperature phase has been performed. In this paper the calculation results are given. Comparison with the results of MnBi is performed in order to find the effect on electronic structure by doping with Al.
Resumo:
We have used low-temperature STM, together with DFT calculations incorporating the effects of dispersion forces, to study from a structural point of view the interaction of NO2 with Au{111} surfaces. NO2 adsorbs molecularly on Au{111} at 80 K, initially as small, disordered clusters at the elbows of the type-x reconstruction lines of the clean-surface herringbone reconstruction, and then as larger, ordered islands on the fcc regions. Within the islands, the NO2 molecules define a (√3 × 2)rect. superlattice, for which we evaluate structural models. By around 0.25 ML coverage, the herringbone reconstruction has been lifted, accompanied by the formation of Au nanoclusters, and the islands have coalesced. At this stage, essentially the whole surface is covered with an overlayer consisting predominantly of domains of the (√3 × 2)rect. structure, but also containing less wellordered regions. With further exposure, the degree of disorder in the overlayer increases; saturation occurs close to 0.43 ML.
Resumo:
Broccoli, a rich source of glucosinolates, is a commonly consumed vegetable of the Brassica family. Hydrolysis products of glucosinolates, isothiocyanates, have been associated with health benefits and contribute to the flavour of Brassica. However, boiling broccoli causes the myrosinase enzyme needed for hydrolysis to denature. In order to ensure hydrolysis, broccoli must either be mildly cooked or active sources of myrosinase, such as mustard seed powder, can be added post-cooking. In this study, samples of broccoli were prepared in six different ways; standard boiling with and without mustard seeds, sous-vide cooking at low temperature (70 °C) and sous-vide cooking at higher temperature (100 ºC) without mustard and with mustard at two different concentrations. The majority of consumers disliked the mildly cooked broccoli samples (70 ºC, 12 min, sous-vide) which had a hard and stringy texture. The highest mean consumer liking was for standard boiled samples (100 ºC, 7 min). Addition of 1% mustard seed powder developed sensory attributes such as pungency, burning sensation, mustard odour and flavour. One cluster of consumers (32%) found mustard seeds to be a good complement to cooked broccoli, however, the majority disliked the mustard-derived sensory attributes. Where the mustard seeds were partially processed, doubling the addition to 2% led to only the same level of mustard flavour and pungency as 1% unprocessed seeds, and mean consumer liking remained unaltered. This suggests that optimisation of the addition level of partially processed mustard seeds may be a route to enhance bioactivity of cooked broccoli without compromising consumer acceptability.
Resumo:
Configurations of supercooled liquids residing in their local potential minimum (i.e. in their inherent structure, IS) were found to support a non-zero shear stress. This IS stress was attributed to the constraint to the energy minimization imposed by boundary conditions, which keep size and shape of the simulation cell fixed. In this paper we further investigate the influence of these boundary conditions on the IS stress. We investigate its importance for the computation of the low frequency shear modulus of a glass obtaining a consistent picture for the low- and high frequency shear moduli over the full temperature range. Hence, we find that the IS stress corresponds to a non-thermal contribution to the fluctuation term in the Born-Green expression. This leads to an unphysical divergence of the moduli in the low temperature limit if no proper correction for this term is applied. Furthermore, we clarify the IS stress dependence on the system size and put its origin on a more formal basis.
Resumo:
In low-temperature anti-ferromagnetic LaMnO3, strong and localized electronic interactions among Mn 3d electrons prevent a satisfactory description from standard local density and generalized gradient approximations in density functional theory calculations. Here we show that the strong on-site electronic interactions are described well only by using direct and exchange corrections to the intra-orbital Coulomb potential. Only DFT+U calculations with explicit exchange corrections produce a balanced picture of electronic, magnetic and structural observables in agreement with experiment. To understand the reason, a rewriting of the functional form of the +U corrections is presented that leads to a more physical and transparent understanding of the effect of these correction terms. The approach highlights the importance of Hund’s coupling (intra-orbital exchange) in providing anisotropy across the occupation and energy eigenvalues of the Mn d states. This intra-orbital exchange is the key to fully activating the Jahn-Teller distortion, reproducing the experimental band gap and stabilizing the correct magnetic ground state in LaMnO3. The best parameter values for LaMnO3 within the DFT(PBEsol)+U framework are determined to be U = 8 eV and J = 1.9 eV.
Resumo:
A low-temperature ionothermal method for the facile synthesis of the halide carbonate, Ba3Cl4CO3, in single-crystalline form has been developed. This has enabled the first determination of the crystal structure of this material to be carried out. Analysis of single-crystal X-ray diffraction data indicates that barium chloride carbonate crystallises in the orthorhombic space group Pnma (Z=4), with a=8.4074(11), b=9.5886(12), c=12.4833(15) Å (Rw=0.0392). It exhibits a complex structure in which a three-dimensional network is formed from cross-linking of chains of anion-centred octahedra that share faces.
Resumo:
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic
decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days.
Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution,
microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation
of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant
effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2
evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001)
was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss
and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2–
12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)
Resumo:
Objective: this study aimed to develop a nondecalcified bone sample processing technique enabling immunohistochemical labeling of proteins by kappa-beta nuclear factor (NF-kB) utilizing the Technovit 7200 VCR (R) in adult male Wistar rats. Study Method: A 1.8 mm diameter defect was performed 0.5mm from the femur proximal joint by means of a round bur. Experimental groups were divided according to fixing solution prior to histologic processing: Group 1- ethanol 70%; Group 2-10% buffered formalin; and Group 3- Glycerol diluted in 70% ethanol at a 70/30 ratio + 10% buffered formalin. The post-surgical periods ranged from 01 to 24 hours. Control groups included a nonsurgical procedure group (NSPG) and surgical procedures where bone exposure was performed (SPBE) without drilling. Prostate carcinoma was the positive control (PC) and samples subjected to incomplete immunohistochemistry protocol were the negative control (NC). Following euthanization, all samples were kept at 4 degrees C for 7 days, and were dehydrated in a series of alcohols at -20 degrees C. The polymer embedding procedure was performed at ethanol/polymer ratios of 70%-30%, 50%-50%, 30%-70%, 100%, and 100% for 72 hours at -20 degrees C. Polymerization followed the manufacturer`s recommendation. The samples were grounded and polished to 10-15 mu m thickness, and were deacrylated. The sections were rehydrated and were submitted to the primary polyclonal antibody anti-NF-kB on a 1:75 dilution for 12 hours at room temperature. Results: Microscopy showed that the Group 2 presented positive reaction to NF-kB, diffuse reactions for NSPG and SPBE, and no reaction for the NC group. Conclusion: The results obtained support the feasibility of the developed immunohistochemistry technique.
Resumo:
The aim of this study was to verify and describe the presence of microorganisms in the single-use trocar after its use in surgical procedures, and after this device was submitted to cleaning, conditioning, and sterilization by physicochemical processes (formaldehyde, ethylene oxide, and hydrogen peroxide plasma). Twenty-eight trocars of the Ethicon, Auto-suture, and Aesculap brands, were randomly selected and analyzed after laparoscopic cholecystectomy. The results have shown that cultures grown of the material collected from the trocars, immediately after its use and before its sterilization process, showed the presence of bacteria and fungi in 46.5% (13). In 53.5% (15) of the trocars, the presence of microorganisms was not detected, very likely due to niche`s scarcity. In the cultures grown of the 28 trocars after being submitted to sterilization processes, the presence of microorganisms was not verified. We can therefore conclude that although trocars possess compartments not easily accessed for cleaning, these devices can be adequately cleaned and effectively sterilized, when well manipulated, in the institution where the study was carried out by the processes of steam sterilization at low temperature and formaldehyde, ethylene oxide, and hydrogen peroxide plasma.
Resumo:
Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a multi-component low-temperature plasma containing electrons, ions and dust, the complicated dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust number density, they contribute to the plasma pressure anisotropy and to its spatial dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under these conditions, some convective plasma flows can arise in confinement devices. Therefore, this question needs special consideration.