927 resultados para litter mixture
Resumo:
In a large interconnected power system, disturbances initiated by a fault or other events cause acceleration in the generator rotors with respect to their synchronous reference frame. This acceleration of rotors can be described by two different dynamic phenomena, as shown in existing literature. One of the phenomena is simultaneous acceleration and the other is electromechanical wave propagation, which is characterized by travelling waves in terms of a wave equation. This paper demonstrates that depending on the structure of the system, the exhibited dynamic response will be dominated by one phenomenon or the other or a mixture of both. Two system structures of choice are examined, with each structure exemplifying each phenomenon present to different degrees in their dynamic responses. Prediction of dominance of either dynamic phenomenon in a particular system can be determined by taking into account the relative sizes of the values of its reduced admittance matrix.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution
Resumo:
A new community and communication type of social networks - online dating - are gaining momentum. With many people joining in the dating network, users become overwhelmed by choices for an ideal partner. A solution to this problem is providing users with partners recommendation based on their interests and activities. Traditional recommendation methods ignore the users’ needs and provide recommendations equally to all users. In this paper, we propose a recommendation approach that employs different recommendation strategies to different groups of members. A segmentation method using the Gaussian Mixture Model (GMM) is proposed to customize users’ needs. Then a targeted recommendation strategy is applied to each identified segment. Empirical results show that the proposed approach outperforms several existing recommendation methods.
Resumo:
Introduction This paper reports on university students' experiences of learning information literacy. Method Phenomenography was selected as the research approach as it describes the experience from the perspective of the study participants, which in this case is a mixture of undergraduate and postgraduate students studying education at an Australian university. Semi-structured, one-on-one interviews were conducted with fifteen students. Analysis The interview transcripts were iteratively reviewed for similarities and differences in students' experiences of learning information literacy. Categories were constructed from an analysis of the distinct features of the experiences that students reported. The categories were grouped into a hierarchical structure that represents students' increasingly sophisticated experiences of learning information literacy. Results The study reveals that students experience learning information literacy in six ways: learning to find information; learning a process to use information; learning to use information to create a product; learning to use information to build a personal knowledge base; learning to use information to advance disciplinary knowledge; and learning to use information to grow as a person and to contribute to others. Conclusions Understanding the complexity of the concept of information literacy, and the collective and diverse range of ways students experience learning information literacy, enables academics and librarians to draw on the range of experiences reported by students to design academic curricula and information literacy education that targets more powerful ways of learning to find and use information.
Resumo:
The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648
Resumo:
This work is part of a series of chemical investigations of the genus Grevillea. Two new arbutin derivatives, seven new bisresorcinols, including a mixture of two isomers, three known flavonol glycosides, and four known resorcinols, including a mixture of two homologous compounds, were isolated from the ethyl acetate extract of the leaves and methanol extract of the stems of Grevillea banksii. The new compounds were identified, on the basis of spectroscopic data, as 6'-O-(3-(2(hydroxymethyl)acryloyloxy)-2-methylpropanoyl)arbutin (1), 6'-O-(2-methylacryloyl)arbutin (2), 5,5'-(4(Z)-dodecen-1,12diyl)bisresorcinol (6), 2'-methyl-5,5'-(4(Z)-tetradecen-1,14-diyl)bisresorcinol (8), 2,2'-di(4-hydroxyprenyl)-5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (9), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl) 5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (10), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl)5,5'-(8(Z)-tetradecen-l,14-diyl)bisresorcinol (11), 5,5'-(10(Z)-tetradecen-1-on-diyl)bisresorcinol (12) and 5,5'-(4(Z)-tetradecen-1-on-diyl)bisresorcinol (13).
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.
Resumo:
We propose a framework for adaptive security from hard random lattices in the standard model. Our approach borrows from the recent Agrawal-Boneh-Boyen families of lattices, which can admit reliable and punctured trapdoors, respectively used in reality and in simulation. We extend this idea to make the simulation trapdoors cancel not for a specific forgery but on a non-negligible subset of the possible challenges. Conceptually, we build a compactly representable, large family of input-dependent “mixture” lattices, set up with trapdoors that “vanish” for a secret subset which we hope the forger will target. Technically, we tweak the lattice structure to achieve “naturally nice” distributions for arbitrary choices of subset size. The framework is very general. Here we obtain fully secure signatures, and also IBE, that are compact, simple, and elegant.
Resumo:
Five anthranilic acid derivatives, a mixture I of three new compounds 11′-hexadecenoylanthranilic acid (1), 9′-hexadecenoylanthranilic acid (2), and 7′-hexadecenoylanthranilic acid (3), as well as a new compound 9,12,15-octadecatrienoylanthranilic acid (4) together with a new natural product, hexadecanoylanthranilic acid (5), were isolated from Geijera parviflora Lindl. (Rutaceae). Their structures were elucidated by extensive spectroscopic measurements, and the positions of the double bonds in compounds 1-3 of the mixture I were determined by tandem mass spectrometry employing ozone-induced dissociation. The mixture I and compound 5 showed good antibacterial activity against several Gram-positive strains. © 2013 Elsevier B.V.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
Social media have become crucial tools for political activists and protest movements, providing another channel for promoting messages and garnering support. Twitter, in particular, has been identified as a noteworthy medium for protests in countries including Iran and Egypt to receive global attention. The Occupy movement, originating with protests in, and the physical occupation of, Wall Street, and inspiring similar demonstrations in other U.S. cities and around the world, has been intrinsically linked with social media through location-specific hashtags: #ows for Occupy Wall Street, #occupysf for San Francisco, and so on. While the individual protests have a specific geographical focus-highlighted by the physical occupation of parks, buildings, and other urban areas-Twitter provides a means for these different movements to be linked and promoted through tweets containing multiple hashtags. It also serves as a channel for tactical communications during actions and as a space in which movement debates take place. This paper examines Twitter's use within the Occupy Oakland movement. We use a mixture of ethnographic research through interviews with activists and participant observation of the movements' activities, and a dataset of public tweets containing the #oo hashtag from early 2012. This research methodology allows us to develop a more accurate and nuanced understanding of how movement activists use Twitter by cross-checking trends in the online data with observations and activists' own reported use of Twitter. We also study the connections between a geographically focused movement such as Occupy Oakland and related, but physically distant, protests taking place concurrently in other cities. This study forms part of a wider research project, Mapping Movements, exploring the politics of place, investigating how social movements are composed and sustained, and the uses of online communication within these movements.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
We investigate the utility to computational Bayesian analyses of a particular family of recursive marginal likelihood estimators characterized by the (equivalent) algorithms known as "biased sampling" or "reverse logistic regression" in the statistics literature and "the density of states" in physics. Through a pair of numerical examples (including mixture modeling of the well-known galaxy dataset) we highlight the remarkable diversity of sampling schemes amenable to such recursive normalization, as well as the notable efficiency of the resulting pseudo-mixture distributions for gauging prior-sensitivity in the Bayesian model selection context. Our key theoretical contributions are to introduce a novel heuristic ("thermodynamic integration via importance sampling") for qualifying the role of the bridging sequence in this procedure, and to reveal various connections between these recursive estimators and the nested sampling technique.
Resumo:
Background: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype–genotype link between the displayed protein and the encoding gene. Results: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50–DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein–plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype–genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films