832 resultados para link acivity
Resumo:
ACKNOWLEDGEMENTS We thank Danijela Bacic, Hannah J€ockel, Lea K€ohler, Katrin Molsen, Marie Landenberger, and Annika Plambeck for their assistance with participant recruitment and data collection, Dale Esliger and Lauren Sherar for processing the accelerometry data, and Matthew Riccio for his helpful comments on the manuscript.
Resumo:
8 pages, 7 figures ACKNOWLEDGEMENT The authors wish to thank the Nesin foundation for an amazing working group activity in Nesin Math Village and wish to thank Tiago Pereira for fruitful discussions. PS and JK acknowledge gratefully the support of BMBF, CoNDyNet, FK. 03SF0472A. TP acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. DE acknowledge support by the Leibniz Association (WGL) under Grant No. SAW-2013-IZW-2.
Resumo:
Publisher PDF
Resumo:
Permanent water bodies not only store dissolved CO2 but are essential for the maintenance of wetlands in their proximity. From the viewpoint of greenhouse gas (GHG) accounting wetland functions comprise sequestration of carbon under anaerobic conditions and methane release. The investigated area in central Siberia covers boreal and sub-arctic environments. Small inundated basins are abundant on the sub-arctic Taymir lowlands but also in parts of severe boreal climate where permafrost ice content is high and feature important freshwater ecosystems. Satellite radar imagery (ENVISAT ScanSAR), acquired in summer 2003 and 2004, has been used to derive open water surfaces with 150 m resolution, covering an area of approximately 3 Mkm**2. The open water surface maps were derived using a simple threshold-based classification method. The results were assessed with Russian forest inventory data, which includes detailed information about water bodies. The resulting classification has been further used to estimate the extent of tundra wetlands and to determine their importance for methane emissions. Tundra wetlands cover 7% (400,000 km**2) of the study region and methane emissions from hydromorphic soils are estimated to be 45,000 t/d for the Taymir peninsula.
Resumo:
The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.
Resumo:
An autonomous vessel, the Offshore Sensing Sailbuoy, was used for wave measurements near the Ekofisk oil platform complex in the North Sea (56.5 N, 3.2 E, operated by ConocoPhilllips) from 6 to 20 November 2015. Being 100% wind propelled, the Sailbuoy has two-way communication via the Iridium network and has the capability for missions of six months or more. It has previously been deployed in the Arctic, Norwegian Sea and the Gulf of Mexico, but this was the first real test for wave measurements. During the campaign it held position about 20km northeast of Ekofisk (on the lee side) during rough conditions. Mean wind speed measured at Ekofisk during the campaign was near 9.8m/s, with a maximum of 20.4m/s, with wind mostly from south and south west. A Datawell MOSE G1000 GPS based 2Hz wave sensor was mounted on the Sailbuoy. Mean significant wave height (Hs 1hr) measured was 3m, whereas maximum Hs was 6m. Mean wave period was 7.7s, while maximum wave height, Hmax, was 12.6m. These measurements have been compared with non-directional Waverider observations at the Ekofisk complex. Mean Hs at Ekofisk was 3.1m, while maximum Hs was 6.5m. Nevertheless, the correlation between the two measurements was high (97%). Spectra comparison was also good, except for low Hs (~1m), where the motion of the vessel seemed to influence the measurements. Nevertheless, the Sailbuoy performed well during this campaign, and results suggests that it is a suitable platform for wave measurements in rather rough sea conditions.
Resumo:
Geomorphic process units have been derived in order to allow quantification via GIS techniques at a catchment scale. Mass movement rates based on existing field measurements are employed in the budget calculations. In the Kärkevagge catchment, Northern Sweden, 80% of the area can be identified either as a source area for sediments or as a zone where sediments are deposited. The overall budget for the slopes beneath the rockwalls in the Kärkevagge is approximately 680 t/a whilst about 150 t a-1 are transported into the fluvial system.
Resumo:
Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.
Resumo:
An area in central Siberia (partial coverage of Turukhansky und Yeniseysky districts) was investigated using satellite data. It covers freshwater ecosystems of non-forested peatlands in boreal forests. The satellite data represent the growing seasons of 2003/2004. Microwave data were acquired by the Advanced Synthetic Aperture Radar (ASAR) instrument onboard ENVISAT. The multi-temporal capabilities and resolution (150mx150m in WS mode) of the ASAR wide swath mode enabled the detection of dynamic features >2ha over this vast area. Scatterometer (QuikScat) data could be employed to distinguish hydro-periods. Wetland types have been identified on the basis of seasonal changes in backscatter. Results for peatlands have been compared with Russian forest inventory data which contain information on wetland distribution.
Resumo:
Sea ice leads play an essential role in ocean-ice-atmosphere exchange, in ocean circulation, geochemistry, and in ice dynamics. Their precise detection is crucial for altimetric estimations of sea ice thickness and volume. This study evaluates the performance of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) altimeter to detect leads and to monitor their spatio-temporal dynamics. We show that a pulse peakiness parameter (PP) used to detect leads by Envisat RA-2 and ERS-1,-2 altimeters is not suitable because of saturation of AltiKa return echoes over the leads. The signal saturation results in loss of 6-10% of PP data over sea ice. We propose a different parameter-maximal power of waveform-and define the threshold to discriminate the leads. Our algorithm can be applied from December until May. It detects well the leads of small and medium size from 200 m to 3-4 km. So the combination of the high-resolution altimetric estimates with low-resolution thermal infra-red or radiometric lead fraction products could enhance the capability of remote sensing to monitor sea ice fracturing.