987 resultados para legal responses
Resumo:
Despite advances in the medical and surgical treatment of Head and Neck (HN) squamous cell carcinoma (HNSCC), long term survival has remained unchanged in the last 20 years. The obvious limitations of traditional therapeutic options strongly urge the development of novel therapeutic approaches. The molecular cloning of tumor antigens recognized by T lymphocytes in recent years has provided targets for specific immunotherapy. In this regard, frequent expression of Cancer Testis Antigens (CTA) has been repeatedly observed among HN tumors. We analyzed CTA expression in 46 HNSCC patients and found that MAGE-A3 and/or -A4 CTA were positive in over 70% of samples, regardless of the anatomical site of primary tumors in the upper aerodigestive tract. Still, immune responses against these CTA in HNSCC patients have not yet been investigated in detail. In this study we assessed the responsiveness of HNSCC patient's lymphocytes against overlapping peptides spanning the entire MAGE-A3 and -A4 proteins. After depletion of CD4+CD25+ regulatory T cells, and following three rounds of in vitro stimulation with pools of overlapping peptides, peripheral blood mononuclear cells (PBMCs) of HNSCC patients were screened by IFN-g and TNF-a intracellular cytokine staining for reactivity against MAGE-A3 or -A4 derived peptides. Cytokine secreting CD4+ T cells, specific for several peptides, were detected in 7/7 patients. In contrast, only 2/5 PBMC from healthy donors showed weak T cell responses against 2 peptides. CD4+ T cells specific for one epitope MAGE-A3(281-295), previously described as an HLA-DR11 restricted epitope naturally processed and presented by dendritic cells and tumor cells, were detected in two patients. MAGE-A3(161-175) specific CD4+ T cells were found in one patient. Six MAGE-A3 and -A4 new epitopes are being characterized. Together, these data suggest that naturally acquired CD4+ T cell responses against CT antigens occur in vivo in HNSCC patients, providing a rational basis for the use of the identified peptides in vaccination protocols.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
How to "bring the [European] Union closer to its citizens" is a vexed and vital problem of European integration. Article 11 TEU on participatory democracy, recently introduced by the Lisbon Treaty, is meant to be part of the solution. The EU Economic and Social Committee has gone so far as to define this provision "a milestone on the road to a people's Europe that is real and feasible". This appears to be an overly optimistic assessment - partly because art. 11 relies heavily on the involvement of civil society organisations, which political science literature suggests is conceptually and/or practically irrelevant to citizen involvement; partly because it largely formalizes participatory practices that have been in existence for years without cognizable effects on citizen participation; and partly because even its most innovative element - the European citizens' initiative (ECI) - does not bring significant changes to the Union's constitutional arrangements in terms of redistributing decision-making power. In addition to that, secondary legislation places significant hurdles on the submission of ECIs and might prevent or delay their becoming a standard democratic practice. This is not to say that art. 11 TEU has no potential at all. Its insertion in the Treaty might provide impetus to rethink and develop past participatory practices, such as horizontal civil dialogue. Moreover, the effects of "popular input" in the form of ECIs on EU institutional dynamics is as yet unknown - and perhaps not negligible, to judge from the keen interest that the European Parliament and other bodies have demonstrated in "appropriating" it as a political asset. Finally, art. 11 raises the stakes of the Union's democratic challenge and might pressure EU institutions to make full use of its potential. Or, if eventually proved inadequate, art. 11 might constitute a constitutional experiment on the way to meaningful forms of direct democracy at EU level.
Resumo:
Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.
Resumo:
MicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired. Similarly, Mir155(-/-) CD8(+) T cells were ineffective at controlling tumor growth, whereas miRNA-155 overexpression enhanced the antitumor response. miRNA-155 deficiency resulted in accumulation of suppressor of cytokine signaling-1 (SOCS-1) causing defective cytokine signaling through STAT5. Consistently, enforced expression of SOCS-1 in CD8(+) T cells phenocopied the miRNA-155 deficiency, whereas SOCS-1 silencing augmented tumor destruction. These findings identify miRNA-155 and its target SOCS-1 as key regulators of effector CD8(+) T cells that can be modulated to potentiate immunotherapies for infectious diseases and cancer.
Resumo:
Rapid diagnosis of active Mycobacterium tuberculosis (Mtb) infection remains a clinical and laboratory challenge. We have analyzed the cytokine profile (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2)) of Mtb-specific T cells by polychromatic flow cytometry. We studied Mtb-specific CD4(+) T cell responses in subjects with latent Mtb infection and active tuberculosis disease. The results showed substantial increase in the proportion of single-positive TNF-α Mtb-specific CD4(+) T cells in subjects with active disease, and this parameter was the strongest predictor of diagnosis of active disease versus latent infection. We validated the use of this parameter in a cohort of 101 subjects with tuberculosis diagnosis unknown to the investigator. The sensitivity and specificity of the flow cytometry-based assay were 67% and 92%, respectively, the positive predictive value was 80% and the negative predictive value was 92.4%. Therefore, the proportion of single-positive TNF-α Mtb-specific CD4(+) T cells is a new tool for the rapid diagnosis of active tuberculosis disease.
Resumo:
Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic-pituitary-adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region.
Resumo:
The effect of intercropping on plant water status, gas exchange and productivity of maize (Zea mays L.) cv. Centralmex, and cowpea (Vigna unguiculata L. (Walp)) cv. Pitiuba were evaluated under semi-arid conditions at the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA) at Petrolina, PE, Brazil. The treatments were: maize and cowpea as sole crops, at a population of 40,000 plants ha-1, and intercropped at a population of 20,000 plants ha-1. The results obtained in this paper appear to be related to the degree of competition experienced by the components, mainly for water and light. Maize intercropped had higher values of leaf water potential, stomatal conductance, transpiration and photosynthesis than as sole crop. Intercropped cowpea had higher values of leaf water potential but lower stomatal conductance, transpiration and photosynthesis than sole cowpea. Maize productivity increased 18% in relation to sole crop whereas a 5% decrease was observed with cowpea. Despite these facts the Land Equivalent Ratio obtained was 1.13 indicating intercropping advantage over the sole system. The higher partial Land Equivalent Ratio observed for maize suggests that this specie was the main component influencing the final productivity of the intercropping system studied.
Resumo:
Genomic approaches to the study of the expression of plant genes induced in response to disease and attack are now showing that there is an intimate association between pathogen perception and general stress detection.
Resumo:
In the real world, mice and men are not immunologically naive, having been exposed to numerous antigenic challenges. Prior infections sometimes negatively impact the response to a subsequent infection. This can occur in serial infections with pathogens sharing cross-reactive Ags. At the T cell level it has been proposed that preformed memory T cells, which cross-react with low avidity to epitopes presented in subsequent infections, dampen the response of high-avidity T cells. We investigated this with a series of related MHC class-I restricted Ags expressed by bacterial and viral pathogens. In all cases, we find that high-avidity CD8(+) T cell precursors, either naive or memory, massively expand in secondary cross-reactive infections to dominate the response over low-avidity memory T cells. This holds true even when >10% of the CD8(+) T cell compartment consists of memory T cells that cross-react weakly with the rechallenge ligand. Occasionally, memory cells generated by low-avidity stimulation in a primary infection recognize a cross-reactive epitope with high avidity and contribute positively to the response to a second infection. Taken together, our data show that the phenomenon of original antigenic sin does not occur in all heterologous infections.
Resumo:
[eng] This report is part of the research project, The effects of social changes in work and professional life of Spanish academics, partially financed by the Spanish Ministry of Science and Innovation (SEJ2006-01876), that has explored change in legislation, organisation, research schemes and so on, in the last thirty years. The main aim of this project is deepening our understanding of the impact of undergoing economic, social, cultural, technological and labour change in Spanish universities in the life and professional identity of the teaching and research staff, taking into account the national and european context. This paper gathers part of the results gained from the project, being its primary objective to contribute to an improved knowledge-base on professional knowledge and work experience in higher education institutions in Spain and, as a consequence, to understand how Spanish academics are coping with current changes.
Resumo:
Neutrophils are antigen-transporting cells that generate vaccinia virus (VACV)-specific T-cell responses, yet how VACV modulates neutrophil recruitment and its significance in the immune response are unknown. We generated an attenuated VACV strain that expresses HIV-1 clade C antigens but lacks three specific viral genes (A52R, K7R, and B15R). We found that these genes act together to inhibit the NFκB signaling pathway. Triple ablation in modified virus restored NFκB function in macrophages. After virus infection of mice, NFκB pathway activation led to expression of several cytokines/chemokines that increased the migration of neutrophil populations (Nα and Nβ) to the infection site. Nβ cells displayed features of antigen-presenting cells and activated virus-specific CD8 T cells. Enhanced neutrophil trafficking to the infection site correlated with an increased T-cell response to HIV vector-delivered antigens. These results identify a mechanism for poxvirus-induced immune response and alternatives for vaccine vector design.