985 resultados para leaf cutting ant
Resumo:
Roma : Antonio Lafreri 1572
Resumo:
The study evaluated the leaf nutritional levels of peach and nectarine trees under subtropical climate in order to improve the fertilization practices. The experiment was carried out in São Paulo state University, Botucatu, São Paulo State, Brazil. The experimental design consisted of subdivided plots, in which plots corresponded to cultivars and subplots to the leaf sample periods. The evaluated peach cultivars were: Marli, Turmalina, Precocinho, Jubileu, Cascata 968, Cascata 848, CP 951C, CP 9553CYN, and Tropic Beauty, and that of nectarine was 'Sun Blaze'. The sample periods were: after harvest, plants in vegetative period; dormancy; beginning of flowering and fruiting (standard sample). Results indicated significant variations in the levels of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn for the sampling period and in N, Ca, Mg, S, B, Fe and Mn levels for the cultivars.
Resumo:
The survival of micropropagated plants during and after acclimatization is a limiting process to plant establishment. There is little information on how the anatomy of vegetative organs of Ficus carica can be affected by culture conditions and acclimatization. The present research aimed to study the effects of time on culture medium and substrates during the acclimatization of fig tree plantlets produced in vitro, characterizing some leaf anatomy aspects of plantlets cultured in vitro and of fig trees produced in field. Plantlets previously multiplied in vitro were separated and transferred into Wood Plant Medium (WPM) where they were kept for 0, 15, 30, 45 and 60 days. Different substrates were tested and studies on leaf anatomy were performed in order to compare among plantlets grown in vitro, plantlets under 20, 40 and 60 days of acclimatization, and field grown plants. Keeping plantlets for 30 days in WPM allowed better development in Plantmax during acclimatization. Field grown plants presented higher number of stomata, greater epicuticular wax thickness and greater leaf tissue production compared to in vitro ones. The leaf tissues of in vitro plantlets show little differentiation and have great stomata number compared with acclimatized plants, which reduce the number of stomata during the acclimatization process.
Resumo:
Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Resumo:
The purpose of this study was to investigate different laser cutting nozzles, nozzle flows and possibilities to improve nozzle flow. Another goal was to design new nozzle configuration in which laser cutting would succeed with better cutting speed and smaller gas consumption. Nozzles and nozzle flows were studied with various methods. Computational fluid dynamics was used to calculate old, convergent nozzles and new convergent-divergent nozzles. Measurement apparatus was used to measure both nozzle types. In cutting tests different materials were cut with new nozzles. With the use of design convergent-divergent nozzles 25 % better cutting speed and 33 % smaller gas consumption were achieved when cutting quality was good. Computational fluid dynamics was also discovered to be useful aid in nozzle design.
Resumo:
The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.
Resumo:
Data concerning the effect of temperature on different physiological parameters of an invasive species can be a useful tool to predict its potential distribution range through the use of modelling approaches. In the case of the Argentine ant these data are too scarce and incomplete. The aim of the present study is to compile new data regarding the effect of temperature on the oviposition rate of the Argentine ant queens. We analysed the oviposition rate of queens at twelve controlled temperatures, ranging from 10ºC to 34ºC under different monogynous and polygynous conditions. The oviposition rate of the Argentine ant queens is affected by temperature in the same manner, independently of the number of queens in the nest. The optimal temperature for egg laying was 28ºC, and its upper and lower limits depended on the degree of polygyny
Resumo:
Forensic laboratories mainly focus on the qualification and the quantitation of the illicit drug under analysis as both aspects are used for judiciary purposes. Therefore, information related to cutting agents (adulterants and diluents) detected in illicit drugs is limited in the forensic literature. This article discusses the type and frequency of adulterants and diluents detected in more than 6000 cocaine specimens and 3000 heroin specimens, confiscated in western Switzerland from 2006 to 2014. The results show a homogeneous and quite unchanging adulteration for heroin, while for cocaine it could be characterised as heterogeneous and relatively dynamic. Furthermore, the results indicate that dilution affects more cocaine than heroin. Therefore, the results provided by this study tend to reveal differences between the respective structures of production or distribution of cocaine and heroin. This research seeks to promote the systematic analysis of cutting agents by forensic laboratories. Collecting and processing data related to the presence of cutting agents in illicit drug specimens produces relevant information to understand and to compare the structure of illicit drug markets.
Resumo:
The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.
Resumo:
Social insects are promising model systems for epigenetics due to their immense morphological and behavioral plasticity. Reports that DNA methylation differs between the queen and worker castes in social insects [1-4] have implied a role for DNA methylation in regulating division of labor. To better understand the function of DNA methylation in social insects, we performed whole-genome bisulfite sequencing on brains of the clonal raider ant Cerapachys biroi, whose colonies alternate between reproductive (queen-like) and brood care (worker-like) phases [5]. Many cytosines were methylated in all replicates (on average 29.5% of the methylated cytosines in a given replicate), indicating that a large proportion of the C. biroi brain methylome is robust. Robust DNA methylation occurred preferentially in exonic CpGs of highly and stably expressed genes involved in core functions. Our analyses did not detect any differences in DNA methylation between the queen-like and worker-like phases, suggesting that DNA methylation is not associated with changes in reproduction and behavior in C. biroi. Finally, many cytosines were methylated in one sample only, due to either biological or experimental variation. By applying the statistical methods used in previous studies [1-4, 6] to our data, we show that such sample-specific DNA methylation may underlie the previous findings of queen- and worker-specific methylation. We argue that there is currently no evidence that genome-wide variation in DNA methylation is associated with the queen and worker castes in social insects, and we call for a more careful interpretation of the available data.
Resumo:
Many organism traits vary along environmental gradients. Common garden experiments provide powerful means to disentangle the role of intrinsic factors, such as genetic or maternal effects, from extrinsic environmental factors in shaping phenotypic variation. Here, we investigate body size and lipid content variation in workers of the socially polymorphic ant Formica selysi along several independent elevation gradients in Switzerland. We compare field-collected workers and workers sampled as eggs from the same colonies but reared in common laboratory conditions. Overall, field-collected workers from high elevation are larger than those from low elevation, but the trend varies substantially among valleys. The same pattern is recovered when the eggs are reared in a common garden, which indicates that body size variation along elevation gradients and valleys is partly explained by genetic or maternal effects. However, both body size and lipid content exhibit significantly greater variation in field-collected workers than in laboratory-reared workers. Hence, much of the phenotypic variation results from a plastic response to the environment, rather than from genetic differences. Eggs from different elevations also show no significant difference in development time in the common garden. Overall, selection on individual worker phenotypes is unlikely to drive the altitudinal distribution of single- and multiple-queen colonies in this system, as phenotypic variation tends to be plastic and can be decoupled from social structure. This study provides insights into the interplay between individual phenotypic variation and social organization and how the two jointly respond to differing environmental conditions.