762 resultados para isothermal CSTR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for debromination of organics by a reductive medium like polypropylene is investigated. The reaction is carried out in inert atmosphere to avoid rapid oxidation of the polymer. Through this detoxification procedure, hydrogen bromide and small brominated alkanes are formed. Experiments in closed ampoules are carried out with tetrabromobisphenol A, dibromophenol, pentabromodiphenyl ether, dichlorophenol and an oil formed by pyrolysis of printed circuit boards in the Haloclean® process. The reaction is examined under isothermal conditions in a temperature range between 300 and 400°C and a residence time between 10 and 30 min. Optimal conditions were found at 350°C and at a residence time of 20 min. As chlorinated phenols are not destroyed under these conditions, the process may be a valuable procedure to gain hydrogen bromide out of mixtures of halogenated feed materials. Also, under atmospheric pressure, a reaction between polypropylene and brominated compounds takes place as could be proved by thermogravimetric analysis. Bromobenzene has an accelerating effect on the rate of weight loss of the polymer, but at higher concentrations, it can also be slowed down. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of an innovative technology for the pyrolytic conversion of brominated phenols in a reductive medium aimed at product recovery for commercial use is discussed in this paper. Brominated phenols are toxic products, which contaminate pyrolysis oil of wastes from electronic and electrical equipment (WEEE). The pyrolysis experiments were carried out with 2,6-dibromophenol, tetrabromobisphenol A, WEEE pyrolysis oil and polypropylene or polyethylene in encapsulated ampoules under inert atmosphere in quasi-isothermal conditions (300-400 °C) with a different residence time (10-30 min). Optimal conditions were found to be the use of polypropylene at 350 °C with a residence time of 20 min. The main pyrolysis products were identified as HBr and phenol. A radical debromination mechanism for the pyrolytic destruction of brominated phenols is suggested. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A version of the thermodynamic perturbation theory based on a scaling transformation of the partition function has been applied to the statistical derivation of the equation of state in a highpressure region. Two modifications of the equations of state have been obtained on the basis of the free energy functional perturbation series. The comparative analysis of the experimental PV T- data on the isothermal compression for the supercritical fluids of inert gases has been carried out. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drastic improvements in styrene yield and selectivity were achieved in the oxidative dehydrogenation of ethylbenzene by staged feeding of O2. Six isothermal packed bed reactors were used in series with intermediate feeding of O2, while all EB was fed to the first reactor, diluted with helium or CO2 (1:5 molar ratio), resulting in total O2:EB molar feed ratios of 0.2-0.6. The two catalyst samples, γ-Al 2O3 and 5P/SiO2, that were applied both benefitted from this operation mode. The ethylbenzene conversion per stage and the selectivity to styrene were significantly improved. The production of COX was effectively reduced, while the selectivity to other side products remained unchanged. Compared with co-feeding at a total O 2:EB molar feed ratio of 0.6, by staged feeding the EB conversion (+15% points for both catalysts), ST selectivity (+4% points for both samples) and O2 (ST) selectivity (+9% points for γ-Al2O 3 and +17% points for 5P/SiO2) all improved. The ethylbenzene conversion over 5P/SiO2 can be increased from 18% to 70% by increasing the number of reactors from 1 to 6 with each reactor a total amount of O2 of 0.1 without the loss of ST selectivity (93%). For 5P/SiO2 a higher temperature (500 C vs. 450 C for Al 2O3) is required. Essentially more catalyst (5P/SiO 2) was required to achieve full O2 conversion in each reactor. Staged feeding of O2 does not eliminate the existing issues of the catalyst stability both in time-on stream and as a function of the number of catalyst regenerations (5P/SiO2), or the relatively moderate performance (relatively low styrene selectivity for γ-Al2O 3). © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vapor phase carbon adsorption systems are used to remove aromatics, aliphatics, and halogenated hydrocarbons. The adsorption capacity of granular activated carbon is reduced when environmental parameters (temperature, pressure, and humidity) interfere with homogeneous surface diffusion and pore distribution dynamics. The purpose of this study was to investigate the effects of parametric uncertainties in adsorption efficiency. ^ Modified versions of the Langmuir isotherm in conjunction with thermodynamic equations described gaseous adsorption of single component influent onto microporous media. Experimental test results derived from Wang et al. (1999) simulated adsorption kinetics while the Myer and monsoon Langmuir constant accounted for isothermal gas compression and energetic heterogeneity under thermodynamic equilibrium conditions. Responsiveness of adsorption capacity to environmental uncertainties was analyzed by statistical sensitivity and modeled by breakthrough curves. Results indicated that extensive fluctuations in adsorption capacity significantly reduced carbon consumption while isothermal variations had a pronounced effect on saturation capacity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small transcriptional factor involved in cell development and oncogenesis. It contains three "AT-hook" DNA binding domains, which specifically recognize the minor groove of AT-rich DNA sequences. It also has an acidic C-terminal motif. Previous studies showed that HMGA2 mediates all its biological effects through interactions with AT-rich DNA sequences in the promoter regions. In this dissertation, I used a variety of biochemical and biophysical methods to examine the physical properties of HMGA2 and to further investigate HMGA2's interactions with AT-rich DNA sequences. The following are three avenues perused in this study: (1) due to the asymmetrical charge distribution of HMGA2, I have developed a rapid procedure to purify HMGA2 in the milligram range. Preparation of large amounts of HMGA2 makes biophysical studies possible; (2) Since HMGA2 binds to different AT-rich sequences in the promoter regions, I used a combination of isothermal titration calorimetry (ITC) and DNA UV melting experiment to characterize interactions of HMGA2 with poly(dA-dT) 2 and poly(dA)poly(dT). My results demonstrated that (i) each HMGA2 molecule binds to 15 AT bp; (ii) HMGA2 binds to both AT DNAs with very high affinity. However, the binding reaction of HMGA2 to poly(dA-dT) 2 is enthalpy-driven and the binding reaction of HMGA2 with poly(dA)poly(dT) is entropy-driven; (iii) the binding reactions are strongly depended on salt concentrations; (3) Previous studies showed that HMGA2 may have sequence specificity. In this study, I used a PCR-based SELEX procedure to examine the DNA binding specificity of HMGA2. Two consensus sequences for HMGA2 have been identified: 5'-ATATTCGCGAWWATT-3' and 5'-ATATTGCGCAWWATT-3', where W represents A or T. These consensus sequences have a unique feature: the first five base pairs are AT-rich, the middle four to five base pairs are GC-rich, and the last five to six base pairs are AT-rich. All three segments are critical for high affinity binding. Replacing either one of the AT-rich sequences to a non-AT-rich sequence causes at least 100-fold decrease in the binding affinity. Intriguingly, if the GC-segment is substituted by an AT-rich segment, the binding affinity of HMGA2 is reduced approximately 5-fold. Identification of the consensus sequences for HMGA2 represents an important step towards finding its binding sites within the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trioxsalen (Tri) is a low-dose drug used in the treatment of psoriasis and other skin diseases. The aim of the study was applying the thermal analysis and complementary techniques for characterization, evaluation of the trioxsalen stability and components of manipulated pharmaceutical formulations. The thermal behavior of the Tri by TG/DTG-DTA in dynamic atmosphere of synthetic air and nitrogen showed the same profile with a melting peak followed by a volatilization-related event. From the curves TG / DTG is observed a single stage of mass loss. By heating the drug in the stove at temperatures of 80, 240 and 260 °C, it had no change in chemical structure through the techniques of XRD, HPLC, MIR, OM and SEM. From the non-isothermal and isothermal TG kinetic studies was possible to calculate the activation energy and reaction order for the Tri. The drug showed good thermal stability. Studies on drug-excipient compatibility showed interaction of trissoralen with sodium lauryl sulfate 1:1. There was no interaction with aerosol, pregelatinized starch, sodium starch glycolate, cellulose, croscarmellose sodium, magnesium stearate, lactose and mannitol.The characterization of three trioxsalen formulations at concentrations of 2.5, 5, 7.5, 10, 12.5 and 15 mg was performed by DSC, TG / DTG, XRD, NIR and MIR. The PCA classification method based on spectral data from the NIR and MIR of trissoralen formulations allows successful differentiation into three groups. The formulation 3 was the one that best showed analytical profile with the following composition of aerosil excipients, pre-gelatinized starch and cellulose. The activation energy of the volatilization process of the drug was determined in binary mixtures and formulation 3 through fitting and isoconversional methods. The binary mixture with sodium starch glycolate and lactose showed differences in kinetic parameters compared to the drug isolated. The thermoanalytical techniques (DSC and TG / DTG) were shown to be promising methodologies for quantifying trioxsalen obtained by the linearity, selectivity, no use solvents, without sample preparation, speed and practicality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial-interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ~320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe/Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial-interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial-interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.