985 resultados para ischemia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: During its German pilot phase, the EuroCMR (European Cardiovascular Magnetic Resonance) registry sought to evaluate indications, image quality, safety, and impact on patient management of routine CMR. BACKGROUND: CMR has a broad range of applications and is increasingly used in clinical practice. METHODS: This was a multicenter registry with consecutive enrollment of patients in 20 German centers. RESULTS: A total of 11,040 consecutive patients were enrolled. Eighty-eight percent of patients received gadolinium-based contrast agents. Twenty-one percent underwent adenosine perfusion, and 11% high-dose dobutamine-stress CMR. The most important indications were workup of myocarditis/cardiomyopathies (32%), risk stratification in suspected coronary artery disease/ischemia (31%), as well as assessment of viability (15%). Image quality was good in 90.1%, moderate in 8.1%, and inadequate in 1.8% of cases. Severe complications occurred in 0.05%, and were all associated with stress testing. No patient died during or due to CMR. In nearly two-thirds of patients, CMR findings impacted patient management. Importantly, in 16% of cases the final diagnosis based on CMR was different from the diagnosis before CMR, leading to a complete change in management. In more than 86% of cases, CMR was capable of satisfying all imaging needs so that no further imaging was required. CONCLUSIONS: CMR is frequently performed in clinical practice in many participating centers. The most important indications are workup of myocarditis/cardiomyopathies, risk stratification in suspected coronary artery disease/ischemia, and assessment of viability. CMR imaging as used in the centers of the pilot registry is a safe procedure, has diagnostic image quality in 98% of cases, and its results have strong impact on patient management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delayed cerebral vasospasm has classically been considered the most important and treatable cause of mortality and morbidity in patients with aneurysmal subarachnoid hemorrhage (aSAH). Secondary ischemia (or delayed ischemic neurological deficit, DIND) has been shown to be the leading determinant of poor clinical outcome in patients with aSAH surviving the early phase and cerebral vasospasm has been attributed to being primarily responsible. Recently, various clinical trials aimed at treating vasospasm have produced disappointing results. DIND seems to have a multifactorial etiology and vasospasm may simply represent one contributing factor and not the major determinant. Increasing evidence shows that a series of early secondary cerebral insults may occur following aneurysm rupture (the so-called early brain injury). This further aggravates the initial insult and actually determines the functional outcome. A better understanding of these mechanisms and their prevention in the very early phase is needed to improve the prognosis. The aim of this review is to summarize the existing literature on this topic and so to illustrate how the presence of cerebral vasospasm may not necessarily be a prerequisite for DIND development. The various factors determining DIND that worsen functional outcome and prognosis are then discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Malgré les immenses progrès réalisés depuis plusieurs années en médecine obstétricale ainsi qu'en réanimation néonatale et en recherche expérimentale, l'asphyxie périnatale, une situation de manque d'oxygène autour du moment de la naissance, reste une cause majeure de mortalité et de morbidité neurologique à long terme chez l'enfant (retard mental, paralysie cérébrale, épilepsie, problèmes d'apprentissages) sans toutefois de traitement pharmacologique réel. La nécessité de développer de nouvelles stratégies thérapeutiques pour les complications de l'asphyxie périnatale est donc aujourd'hui encore essentielle. Le but général de ce travail est l'identification de nouvelles cibles thérapeutiques impliquées dans des mécanismes moléculaires pathologiques induits par l'hypoxie-ischémie (HI) dans le cerveau immature. Pour cela, le modèle d'asphyxie périnatale (proche du terme) le plus reconnu chez le rongeur a été développé (modèle de Rice et Vannucci). Il consiste en la ligature permanente d'une artère carotide commune (ischémie) chez le raton de 7 jours combinée à une période d'hypoxie à 8% d'oxygène. Il permet ainsi d'étudier les lésions de type hypoxique-ischémique dans différentes régions cérébrales dont le cortex, l'hippocampe, le striatum et le thalamus. La première partie de ce travail a abordé le rôle de deux voies de MAPK, JNK et p38, après HI néonatale chez le raton à l'aide de peptides inhibiteurs. Tout d'abord, nous avons démontré que D-JNKI1, un peptide inhibiteur de la voie de JNK présentant de fortes propriétés neuroprotectrices dans des modèles d'ischémie cérébrale adulte ainsi que chez le jeune raton, peut intervenir sur différentes voies de mort dont l'activation des calpaïnes (marqueur de la nécrose précoce), l'activation de la caspase-3 (marqueur de l'apoptose) et l'expression de LC3-II (marqueur de macroautophagie). Malgré ces effets positifs le traitement au D-JNKI1 ne modifie pas l'étendue de la lésion cérébrale. L'action limitée de D-JNKI1 peut s'expliquer par une implication modérée des JNKs (faiblement activées et principalement l'isotype JNK3) après HI néonatale sévère. Au contraire, l'inhibition de la voie de nNOS/p38 par le peptide DTAT-GESV permet une augmentation de 20% du volume du tissu sain à court et long terme. Le second projet a étudié les effets de l'HI néonatale sur l'autophagie neuronale. En effet, l'autophagie est un processus catabolique essentiel au bien-être de la cellule. Le type principal d'autophagie (« macroautophagie » , que nous appellerons par la suite « autophagie ») consiste en la séquestration d'éléments à dégrader (protéines ou organelles déficients) dans un compartiment spécialisé, l'autophagosome, qui fusionne avec un lysosome pour former un autolysosome où le contenu est dégradé par les hydrolases lysosomales. Depuis peu, l'excès ou la dérégulation de l'autoptiagie a pu être impliqué dans la mort cellulaire en certaines conditions de stress. Ce travail démontre que l'HI néonatale chez le raton active fortement le flux autophagique, c'est-à-dire augmente la formation des autophagosomes et des autolysosomes, dans les neurones en souffrance. De plus, la relation entre l'autophagie et l'apoptose varie selon la région cérébrale. En effet, alors que dans le cortex les neurones en voie de mort présentent des caractéristiques mixtes apoptotiques et autophagiques, ceux du CA3 sont essentiellement autophagiques et ceux du CA1 sont principalement apoptotiques. L'induction de l'autophagie après HI néonatale semble donc participer à la mort neuronale soit par l'enclenchement de l'apoptose soit comme mécanisme de mort en soi. Afin de comprendre la relation pouvant exister entre autophagie et apoptase un troisième projet a été réalisé sur des cultures primaires de neurones corticaux exposés à un stimulus apoptotique classique, la staurosporine (STS). Nous avons démontré que l'apoptose induite par la STS était précédée et accompagnée par une forte activation du flux autophagique neuronal. L'inhibition de l'autophagie de manière pharmacologique (3-MA) ou plus spécifiquement par ARNs d'interférence dirigés contre deux protéines autophagiques importantes (Atg7 et Atg5) a permis de mettre en évidence des rôles multiples de l'autophagie dans la mort neuronale. En effet, l'autophagie prend non seulement part à une voie de mort parallèle à l'apoptose pouvant être impliquée dans l'activation des calpaïnes, mais est également partiellement responsable de l'induction des voies apoptotiques (activation de la caspase-3 et translocation nucléaire d'AIF). En conclusion, ce travail a montré que l'inhibition de JNK par D-JNKI1 n'est pas un outil neuroprotecteur efficace pour diminuer la mort neuronale provoquée par l'asphyxie périnatalé sévère, et met en lumière deux autres voies thérapeutiques beaucoup plus prometteuses, l'inhibition de nNOS/p38 ou de l'autophagie. ABSTRACT : Despite enormous progress over the last«decades in obstetrical and neonatal medicine and experimental research, perinatal asphyxia, a situation of lack of oxygen around the time of the birth, remains a major cause of mortality and long term neurological morbidity in children (mental retardation, cerebral palsy, epilepsy, learning difficulties) without any effective treatment. It is therefore essential to develop new therapeutic strategies for the complications of perinatal asphyxia. The overall aim of this work was to identify new therapeutic targets involved in pathological molecular mechanisms induced by hypoxia-ischemia (HI) in the immature brain. For this purpose, the most relevant model of perinatal asphyxia (near term) in rodents has been developed (model of Rice and Vannucci). It consists in the permanent ligation of one common carotid artery (ischemia) in the 7-day-old rat combined with a period of hypoxia at 8% oxygen. This model allows the study of the hypoxic-ischemic lesion in different brain regions including the cortex, hippocampus, striatum and thalamus. The first part of this work addressed the role of two MAPK pathways (JNK and p38) after rat neonatal HI using inhibitory peptides. First, we demonstrated that D-JNKI1, a JNK peptide inhibitor presenting strong neuroprotective properties in models of cerebral ischemia in adult and young rats, could affect different cell death mechanisms including the activation of calpain (a marker of necrosis) and caspase-3 (a marker of apoptosis), and the expression of LC3-II (a marker of macroautophagy). Despite these positive effects, D-JNKI1 did not modify the extent of brain damage. The limited action of D-JNKI1 can be explained by the fact that JNKs were only moderately involved (weakly activated and principally the JNK3 isotype) after severe neonatal HI. In contrast, inhibition of nNOS/p38 by the peptide D-TAT-GESV increased the surviving tissue volume by around 20% at short and long term. The second project investigated the effects of neonatal HI on neuronal autophagy. Indeed, autophagy is a catabolic process essential to the well-being of the cell. The principal type of autophagy ("macroautophagy", that we shall henceforth call "autophagy") involves the sequestration of elements to be degraded (deficient proteins or organelles) in a specialized compartment, the autophagosome, which fuses with a lysosome to form an autolysosome where the content is degraded by lysosomal hydrolases. Recently, an excess or deregulation of autophagy has been implicated in cell death in some stress conditions. The present study demonstrated that rat neonatal HI highly enhanced autophagic flux, i.e. increased autophagosome and autolysosome formation, in stressed neurons. Moreover, the relationship between autophagy and apoptosis varies according to the brain region. Indeed, whereas dying neurons in the cortex exhibited mixed features of apoptosis and autophagy, those in CA3 were primarily autophagíc and those in CA1 were mainly apoptotic. The induction of autophagy after neonatal HI seems to participate in neuronal death either by triggering apoptosis or as a death mechanism per se. To understand the relationships that may exist between autophagy and apoptosis, a third project has been conducted using primary cortical neuronal cultures exposed to a classical apoptotic stimulus, staurosporine (STS). We demonstrated that STS-induced apoptosis was preceded and accompanied by a strong activation of neuronal autophagic flux. Inhibition of autophagy pharmacologically (3-MA) or more specifically by RNA interference directed against two important autophagic proteins (Atg7 and AtgS) showed multiple roles of autophagy in neuronal death. Indeed, autophagy was not only involved in a death pathway parallel to apoptosis possibly involved in the activation of calpains, but was also partially responsible for the induction of apoptotic pathways (caspase-3 activation and AIF nuclear translocation). In conclusion, this study showed that JNK inhibition by D-JNKI1 is not an effective neuroprotective tool for decreasing neuronal death following severe perinatal asphyxia, but highlighted two more promising therapeutic approaches, inhibition of the nNOSlp38 pathway or of autophagy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent progress in cancer therapy has dramatically modified the course and prognosis of some malignancies. Chemo and radiotherapy, along with newer targeted treatments, are given to control symptoms, postpone relapse, or attempt cure. However, many of these regimens are associated with adverse cardiovascular effects such as impaired left ventricular function, myocardial ischemia, hypertension, and arrhythmia. Awareness of potential cardiotoxicity is important, as it may allow practitioners to recognize early signs of cardiac complications and to adapt therapy in order to limit detrimental effects. Diagnosis of cardiovascular complications may iustify the introduction of cardiologic therapies, and may require the reassessment of risk/benefit ratios related to specific cancer therapy. Screening and follow up strategies are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Elevated blood pressure (BP) is frequent in patients with acute ischemic stroke. Pathophysiological data support its usefulness to maintain adequate perfusion of the ischemic penumba. This review article aims to summarize the available evidence from clinical studies that examined the prognostic role of BP during the acute phase of ischemic stroke and intervention studies that assessed the efficacy of active BP alteration. RECENT FINDINGS: We found 34 observational studies (33,470 patients), with results being inconsistent among the studies; most studies reported a negative association between increased levels of BP and clinical outcome, whereas a few studies showed clinical improvement with higher BP levels, clinical deterioration with decreased BP, or no association at all. Similarly, the conclusions drawn by the 18 intervention studies included in this review (1637 patients) were also heterogeneous. Very recent clinical data suggest a possible beneficial effect of early treatment with some antihypertensives on late clinical outcome. SUMMARY: Observational and interventional studies of management of acute poststroke hypertension yield conflicting results. We discuss different explanations that may account for this and discuss the current guidelines and pathophysiological considerations for the management of acute poststroke hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

So far, cardiac arrest is still associated with high mortality or severe neurological disability in survivors. At the tissue level, cardiac arrest results into an acute condition of generalized hypoxia. A better understanding of the pathophysiology of ischemia-reperfusion and of the inflammatory response that develops after cardiac arrest could help to design novel therapeutic strategies in the future. It seems unlikely that a single drug, acting as a <magic bullet>, might be able to improve survival or neurological prognosis. Lessons learned from pathophysiological mechanisms rather indicate that combined therapies, involving thrombolysis, neuroprotective agents, antioxidants and anti-inflammatory molecules, together with temperature cooling, might represent helpful strategies to improve patient's outcome after cardiac arrest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary.  Background:  Severe stroke carries high rates of mortality and morbidity. The aims of this study were to determine the characteristics of patients who initially presented with severe ischemic stroke, and to identify acute and subacute predictors of favorable clinical outcome in these patients. Methods:  An observational cohort study, Acute Stroke Registry and Analysis of Lausanne (ASTRAL), was analyzed, and all patients presenting with severe stroke - defined as a National Institute of Health Stroke Scale score of ≥ 20 on admission - were compared with all other patients. In a multivariate analysis, associations with demographic, clinical, pathophysiologic, metabolic and neuroimaging factors were determined. Furthermore, we analyzed predictors of favorable outcome (modified Rankin scale score of ≤ 3 at 3 months) in the subgroup of severe stroke patients. Results:  Of 1915 consecutive patients, 243 (12.7%) presented with severe stroke. This was significantly associated with cardio-embolic stroke mechanism (odds ratio [OR] 1.74, 95% confidence interval [CI] 1.19-2.54), unknown stroke onset (OR 2.35, 95% CI 1.14-4.83), more neuroimaging signs of early ischemia (mostly computed tomography; OR 2.65, 95% CI 1.79-3.92), arterial occlusions on acute imaging (OR 27.01, 95% CI 11.5-62.9), fewer chronic radiologic infarcts (OR 0.43, 95% CI 0.26-0.72), lower hemoglobin concentration (OR 0.97, 95% CI 0.96-0.99), and higher white cell count (OR 1.05, 95% CI 1.00-1.11). In the 68 (28%) patients with favorable outcomes despite presenting with severe stroke, this was predicted by lower age (OR 0.94, 95% CI 0.92-0.97), preceding cerebrovascular events (OR 3.00, 95% CI 1.01-8.97), hypolipemic pretreatment (OR 3.82, 95% CI 1.34-10.90), lower acute temperature (OR 0.43, 95% CI 0.23-0.78), lower subacute glucose concentration (OR 0.74, 95% CI 0.56-0.97), and spontaneous or treatment-induced recanalization (OR 4.51, 95% CI 1.96-10.41). Conclusions:  Severe stroke presentation is predicted by multiple clinical, radiologic and metabolic variables, several of which are modifiable. Predictors in the 28% of patients with favorable outcome despite presenting with severe stroke include hypolipemic pretreatment, lower acute temperature, lower glucose levels at 24 h, and arterial recanalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Popliteal entrapment is a rare compression syndrome involving vascular (and neurologic) structures of the popliteal fossa. In this article we review the popliteal artery entrapment syndrome (PAES). PAES is a cause of intermittent claudication that can be, although rarely, complicated with acute limb-threatening ischemia. PAES occurs more often in young adult. Concerning pathophysiology, PAES is provoked by an abnormal relationship between popliteal artery and muscular-tendon structures within the popliteal fossa. A surgical repair is usually required to resolve mechanical compression or vascular damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decision to revascularize a patient with stable coronary artery disease should be based on the detection of myocardial ischemia. If this decision can be straightforward with significant stenosis or in non-significant stenosis, the decision with intermediate stenosis is far more difficult and require invasive measures of functional impact of coronary stenosis on maximal blood (flow fractional flow reserve=FFR). A recent computer based method has been developed and is able to measure FFR with data acquired during a standard coronary CT-scan (FFRcT). Two recent clinical studies (DeFACTO and DISCOVER-FLOW) show that diagnostic performance of FFRcT was associated with improved diagnostic accuracy versus standard coronary CT-scan for the detection of myocardial ischemia although FFRcT need further development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY/PRINCIPLES: After arterial ischemic stroke (AIS) an early diagnosis helps preserve treatment options that are no longer available later. Paediatric AIS is difficult to diagnose and often the time to diagnosis exceeds the time window of 6 hours defined for thrombolysis in adults. We investigated the delay from the onset of symptoms to AIS diagnosis in children and potential contributing factors. METHODS: We included children with AIS below 16 years from the population-based Swiss Neuropaediatric Stroke Registry (2000-2006). We evaluated the time between initial medical evaluation for stroke signs/symptoms and diagnosis, risk factors, co-morbidities and imaging findings. RESULTS: A total of 91 children (61 boys), with a median age of 5.3 years (range: 0.2-16.2), were included. The time to diagnosis (by neuro-imaging) was <6 hours in 32 (35%), 6-12 hours in 23 (25%), 12-24 hours in 15 (16%) and >24 hours in 21 (23%) children. Of 74 children not hospitalised when the stroke occurred, 42% had adequate outpatient management. Delays in diagnosis were attributed to: parents/caregivers (n = 20), physicians of first referral (n = 5) and tertiary care hospitals (n = 8). A co-morbidity hindered timely diagnosis in eight children. No other factors were associated with delay to diagnosis. A total of 17 children were inpatients at AIS onset. CONCLUSIONS: One-third of children with AIS were diagnosed within six hours. Diagnostic delay was predominately caused by insufficient recognition of stroke symptoms. Increased public and expert awareness and immediate access to diagnostic imaging are essential. The ability of parents/caregivers and health professionals to recognise stroke symptoms in a child needs to be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiasmal dysfunction produces a characteristic clinical picture, regardless of the mechanism. In most cases a compressive lesion is the cause. In occasional cases, however, no such extrinsic mass is found and other possible etiologies must be explored. In some of these cases, the pathologic process is identifiable with appropriate neuroimaging. For example, inflammation, infiltrative tumors, and radiation necrosis produce intrinsic chiasmal enhancement. Chiasmal ischemia may require specialized magnetic resonance (MR) sequences for diagnosis. Chiasmal hemorrhage, trauma and chiasmal herniation typically produce distinctive changes on noncontrasted imaging. In cases of metabolic insult, either toxic or hereditary, radiographic changes are typically absent. In each of these, the correct diagnosis can usually be made with a combination of clinical and radiographic features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Meningococcal disease causes septic shock with associated disseminated intravascular coagulation and hemorrhagic skin necrosis. In severe cases, widespread vascular thrombosis leads to gangrene of limbs and digits and contributes to morbidity and mortality. Uncontrolled case reports have suggested that thrombolytic therapy may prevent some complications, and the use of tissue plasminogen activator (t-PA) has been widespread. Our aim was to summarize the clinical outcome and adverse effects where systemic t-PA has been used to treat children with fulminant meningococcemia. DESIGN: International, multiple-center, retrospective, observational case note study between January 1992 and June 2000. SETTING: Twenty-four different hospitals in seven European countries and Australia. PATIENTS: A total of 62 consecutive infants and children with severe meningococcal sepsis in whom t-PA was used for the treatment of predicted amputations and/or refractory shock (40 to treat severe ischemia, 12 to treat shock, and ten to treat both). INTERVENTIONS: t-PA was administered with a median dose of 0.3 mg.kg(-1).hr(-1) (range, 0.008-1.13) and a median duration of 9 hrs (range, 1.2-83). MAIN RESULTS: Twenty-nine of 62 patients died (47%; 95% confidence interval, 28-65). Seventeen of 33 survivors had amputations (11 below knee/elbow or greater loss; six less severe). In 12 of 50 patients to whom t-PA was given for imminent amputation, no amputations were observed. Five developed intracerebral hemorrhages (five of 62, 8%; 95% confidence interval, 0.5-16). Of these five, three died, one developed a persistent hemiparesis, and one recovered completely. CONCLUSIONS: The high incidence of intracerebral hemorrhage in our study raises concerns about the safety of t-PA in children with fulminant meningococcemia. However, due to the absence of a control group in such a severe subset of patients, whether t-PA is beneficial or harmful cannot be answered from the unrestricted use of the drug that is described in this report. Our experience highlights the need to avoid strategies that use experimental drugs in an uncontrolled fashion and to participate in multiple-center trials, which are inevitably required to study rare diseases.