989 resultados para invasive strategy.
Resumo:
The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.
Resumo:
The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.
Resumo:
Lionfish, Pterois volitans and P. miles, are native to the Indo-Pacific and have recently invaded the Western Atlantic Ocean. Strategies for control of this invasion have included limited removal programs and promotion of lionfish consumption at both local and commercial scales. We demonstrate that lionfish meat contains higher levels of healthy n-3 fatty acids than some frequently consumed native marine fish species. Mean lionfish fillet yield was 30.5% of the total body wet weight, a value that is similar to that of some grouper and porgy species. A sensory evaluation indicated that lionfish meet the acceptability threshold of most consumers.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project.
Resumo:
The invasive colonial tunicate Didemnum vexillum has become widespread in New England waters, colonizing large areas of shell-gravel bottom on Georges Bank including commercial sea scallop (Placopecten magellanicus) grounds. Didemnum vexillum colonies are also fouling coastal shellfish aquaculture gear which increases maintenance costs and may affect shellfish growth rates. We hypothesized that D. vexillum will continue to spread and may affect shellfish larval settlement and survival. We conducted a laboratory experiment to assess interactions between larval bay scallops (Argopectin irradians irradians) and D. vexillum. We found that larval bay scallops avoid settling on D. vexillum colonies, possibly deterred by the low pH of the tunicate’s surface tissue. The results of this study suggest that widespread colonization of substrata by D. vexillum could affect scallop recruitment by reducing the area of quality habitats available for settlement. We propose that the bay scallop can serve as a surrogate for the sea scallop in estimating the negative impact D. vexillum could have on the recruitment of sea scallops on Georges Bank.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the U.S. southeast coast, Bermuda, Bahamas, and are becoming established in the Caribbean. While these lionfish are popular in the aquarium trade, their biology and ecology are poorly understood in their native range. Given the rapid establishment and potential adverse impacts of these invaders, comprehensive studies of their biology and ecology are warranted. Here we provide a synopsis of lionfish biology and ecology including invasion chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and control and management. This information was collected through review of the primary literature and published reports and by summarizing current observations. Suggestions for future research on invasive lionfish in their invaded regions are provided.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.
Resumo:
This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers. Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance and impact, or monitor changes over time.
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.
Resumo:
On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.