955 resultados para intense neutron flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of externally applied l-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5′-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing l-cysteine to the nutrient solution increased internal cysteine, γ-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm l-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm l-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of l-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm l-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using 35SO42– in the presence of 0.5 mm l-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of ≈1°C are inferred at ≈10,700–10,500 and 8,200–7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1°C in central Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations have shown that the analysis results of ground level enhancements (GLEs) based on neutron monitor (NM) data for a selected event can differ considerably depending the procedure used. This may have significant consequences e.g. for the assessment of radiation doses at flight altitudes. The reasons for the spread of the GLE parameters deduced from NM data can be manifold and are at present unclear. They include differences in specific properties of the various analysis procedures (e.g. NM response functions, different ways in taking into account the dynamics of the Earth’s magnetospheric field), different characterisations of the solar particle flux near Earth as well as the specific selection of NM stations used for the analysis. In the present paper we quantitatively investigate this problem for a time interval during the maximum phase of the GLE on 13 December 2006. We present and discuss the changes in the resulting GLE parameters when using different NM response functions, different model representations of the Earth’s magnetospheric field as well as different assumptions for the solar particle spectrum and pitch angle distribution near Earth. The results of the study are expected to yield a basis for the reduction in the spread of the GLE parameters deduced from NM data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data:  1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^