991 resultados para intelligent speed adaptation
Resumo:
This report describes development of micro-fabricated piezoelectric ultrasonic motors and bulk-ceramic piezoelectric ultrasonic motors. Ultrasonic motors offer the advantage of low speed, high torque operation without the need for gears. They can be made compact and lightweight and provide a holding torque in the absence of applied power, due to the traveling wave frictional coupling mechanism between the rotor and the stator. This report covers modeling, simulation, fabrication and testing of ultrasonic motors. Design of experiments methods were also utilized to find optimal motor parameters. A suite of 8 mm diameter x 3 mm tall motors were machined for these studies and maximum stall torques as large as 10^(- 3) Nm, maximum no-load speeds of 1710 rpm and peak power outputs of 27 mW were realized. Aditionally, this report describes the implementation of a microfabricated ultrasonic motor using thin-film lead zirconate titanate. In a joint project with the Pennsylvania State University Materials Research Laboratory and MIT Lincoln Laboratory, 2 mm and 5 mm diameter stator structures were fabricated on 1 micron thick silicon nitride membranes. Small glass lenses placed down on top spun at 100-300 rpm with 4 V excitation at 90 kHz. The large power densities and stall torques of these piezoelectric ultrasonic motors offer tremendous promis for integrated machines: complete intelligent, electro-mechanical autonomous systems mass-produced in a single fabrication process.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.
Resumo:
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.
Resumo:
The performances of high-speed network communications frequently rest with the distribution of data-stream. In this paper, a dynamic data-stream balancing architecture based on link information is introduced and discussed firstly. Then the algorithms for simultaneously acquiring the passing nodes and links of a path between any two source-destination nodes rapidly, as well as a dynamic data-stream distribution planning are proposed. Some related topics such as data fragment disposal, fair service, etc. are further studied and discussed. Besides, the performance and efficiency of proposed algorithms, especially for fair service and convergence, are evaluated through a demonstration with regard to the rate of bandwidth utilization. Hoping the discussion presented here can be helpful to application developers in selecting an effective strategy for planning the distribution of data-stream.
Resumo:
Aquest quadern és el primer lliurement de les Orientacions per a l’adaptació a l’espai europeu d’educació superior. Té l’origen en el debat de la Comissió de seguiment del Pla pilot d’adaptació a l’espai europeu d’educació superior de la UdG i del grup de treball que s’ha constituït l’hivern 2005-2006 expressament per tractar el tema de les competències
Resumo:
Aquest quadern forma part de la Guia per a l'adaptació a l'espai europeu d'educació superior
Resumo:
Aquest quadern forma part de la Guia per a l'adaptació a l'espai europeu d'educació superior
Resumo:
Aquest quadern és el quart lliurement de la Guia per a l'adaptació a l'espai europeo superior. Té l'origen en el debat de la Comissió de Seguiment del Pla Pilot d'adaptació a l'Espai Europeu d'Educació Superior de la UdG i del grup de treball que s'ha constituït l'estiu del 2006 expressament per tractar el tema de les activitats d'aprenentatge
Resumo:
Aquest quadern és el cinquè lliurement de la Guia per a l'adaptació a l'espai europeu d'educació superior. Té l'origen en el debat de la Comissió de Seguiment del Pla pilot d'Adaptació a l'Espai Europeu d'Educació Superior de la UdG i del grup de treball que s'ha constituït expressament per tractar el tema de l'avaluació dels aprenentatges
Resumo:
Aquest quadern és el sisè lliurament de la Guia per a l'adaptació a l'espai europeu d'educació superior. Té l'origen en el debat de la Comissió de Seguiment del Pla Pilot d'Adaptació a l'Espai Europeu d'Educació Superior de la UdG i del grup de treball que s'ha constituït expressament per tractar el tema de l'avaluació dels aprenentatges
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process