973 resultados para insect pests
Resumo:
Thiamethoxam is a systemic insecticide from the neonicotinoid group, nitroguanidin family which affects the nicotinic receptor acetyl choline in the insect membrane, wounding the nervous system and causing the death of the insect. It was used with success in the control of initial pests of several crops. It was considered that thiamethoxam has a bioactivator effect, because in the absence of insects promoted increase in vigor, development and productivity of crops. This work was carried out to verify if thiamethoxam causes histological changes in sugarcane roots. In this work, it was used optical microscopy, images arrest, tissue biometrics and statistical analysis, in young roots of sugarcane RB 83 5486 after the treatments with different thiamethoxam concentrations. It was determined changes in histological structure of tissues 7, 14, 21 and 28 days after the treatments, establishing its effects on root plant anatomy. It was verified that thiamethoxam increased root cortex width, increasing the vascular cylinder and the metaxylem vessel elements number in the vascular tissue until 21 days after application.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification.
Resumo:
Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp-seed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.
Resumo:
In sugarcane fields, colonization of the stalk by opportunistic fungi usually occurs after the caterpillar Diatraea saccharalis attacks the sugarcane plant. Plants respond to insect attack by inducing and accumulating a large set of defense proteins. Two homologues of a barley wound-inducible protein (BARWIN), sugarcane wound-inducible proteins SUGARWIN1 and SUGARWIN2, have been identified in sugarcane by an in silico analysis. Antifungal properties have been described for a number of BARWIN homologues. We report that a SUGARWIN:green fluorescent protein fusion protein is located in the endoplasmic reticulum and in the extracellular space of sugarcane plants. The induction of sugarwin transcripts occurs in response to mechanical wounding, D. saccharalis damage, and methyl jasmonate treatment. The accumulation of transcripts is late induced and is restricted to the site of the wound. Although the transcripts of sugarwin genes were strongly increased following insect attack, the protein itself did not show any effect on insect development; rather, it altered fungal morphology, leading to the apoptosis of the germlings. These results suggest that, in the course of evolution, sugarwin-encoding genes were recruited by sugarcane due to their antipathogenic activity. We rationalize that sugarcane is able to induce sugarwin gene expression in response to D. saccharalis feeding as a concerted plant response to the anticipated invasion by the fungi that typically penetrate the plant stalk after insect damage.
Resumo:
Accelerated tropical landscape changes occurring over recent decades have produced environmental mosaics comprising remaining isolated green areas and mixed land-use types. Our objective was to study the effects of alterations in the natural landscape on the species composition and structure of assemblages of Asteraceae and their endophagous insects through comparisons between cerrado (savanna), pastures and Eucalyptus stands. We first investigated whether similarities between assemblages of Asteraceae and their insects varied among land uses or localities. Secondly, we asked whether assemblages of Eucalyptus stands and pastures are subsets of those within the cerrado. We sampled within randomly deployed transects in 15 areas. Land use was found to be an important factor in determining plant composition similarity; however, locality did not exert any significant influence. Pastures were less similar to one another, suggesting high beta diversity. Similarities among insect assemblages were correlated with plant assemblage composition, but not with land use or locality. Species of Tephritidae were distributed along localities independently of land use. High beta diversity in Asteraceae assemblages among cerrados and pastures was supported by nestedness analysis. Plant assemblages in Eucalyptus stands were subsets of cerrado, but pasture assemblages were only partial subsets. A higher degree of nestedness in insect assemblages than in plant assemblages indicated lower beta diversity within these herbivores. Our data indicate that many herbivores are specialized on widely distributed plant genera. Conservation of Asteraceae species and their flower head insects depends not only on maintenance of landscape fragments but also on the correct matching of management form and land use. Such management may contribute to reducing isolation of plant and insect species by increasing the connectivity of remaining cerrado tracts, allowing population maintenance even at low abundances.
Resumo:
Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.
Resumo:
Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines-is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against leishmaniases, and possibly against other parasitic diseases affecting the poorest of the poor.
Resumo:
Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Resumo:
Ceratitis capitata is one of the most important pests of fruits for exportation, and Sterile Insect Technique (SIT) has been the most efficient and environmental friendly technique used to control fruit fly populations around the world. A key goal in achieving a successful SIT program is a mass rearing system producing high quality insects at low cost. Providing adults with an artificial diet containing hydrolysed protein has been the major obstacle for bio-production facilities in Brazil, because it is expensive and has to be imported. Two other commercial products, autolysed yeast (AY) and yeast extract (YE), of domestic origin and low cost, were tested as substitutes of the imported hydrolyzed protein. To compare their efficiency we observed the female fecundity, adult survival and egg viability of flies raised on diets containing one of each of the different protein products. Flies reared on the domestic yeast products had equivalent or superior performance to the flies reared on imported protein. Both AY and YE can be a possible substitute for imported hydrolyzed protein for C. capitata mass-rearing, as they are cheaper and are readily available in the national market.
Resumo:
Summary During the infection of Lepidoptera larvae with baculoviruses the horizontal escape of Tc1-like transposons, termed TCl4.7 and TCp3.2, from the genome of the host Cryptophlebia leucotreta and Cydia pomonella into the genome of Cydia pomonella granulovirus was observed. In this study we addressed the question whether the transposon harboring viruses had a replication advantage over the wild-type and became dominant in the virus population or whether the activity of the host transposable elements is stimulated by virus infection. Biological characterization studies demonstrated that the transposon containing viruses killed C. pomonella larvae slower than CpGV-M. In co-infection experiments of C. pomonella larvae using a mixture of CpGV-M and mutant viruses as inoculum, it was shown that the transposon carrying mutants had a significant selection disadvantage compared to CpGV-M. Transcription levels of the transposase gene of TCp3.2 were investigated in virus infected and uninfected larvae. These experiments demonstrated that a higher level of transposase transcription was detectable in CpGV-M infected than in mock infected control larvae. This observation gave strong evidence that CpGV-M infection might trigger the activity of transposon TCp3.2 within the genome of Cydia pomonella. Our results suggest that the horizontal transfer of insect host transposons into baculovirus genomes might be induced by virus infection.
Resumo:
Der Gemeine Ohrwurm (Forficula auricularia LINNAEUS 1758) wurde bisher im Weinbau als natürlicher Gegenspieler verschiedener Rebschädlinge zu den Nützlingen gezählt. Etwa seit 2005 verursacht er aufgrund stark ansteigender Populationsdichten Schäden in pfälzischen Rebanlagen. Ohrwürmer halten sich massenhaft in den Trauben auf. Zusammen mit ihren Exkrementen geraten sie bei der Lese in großer Zahl ins Erntegut. Die Tiere werden von der weinbaulichen Praxis als sehr störend und qualitätsmindernd empfunden und ihre Einstufung als Nützling kritisch gesehen. Aufgrund dieser Problematik wurde im Mai 2007 ein durch den Forschungsring des Deutschen Weinbaus (FDW) finanziertes Forschungsprojekt am Dienstleistungszentrum Ländlicher Raum Rheinpfalz in Neustadt an der Weinstraße begonnen. Bis 2010 wurden offene Fragen zur Erfassung und Populationsbiologie des Gemeinen Ohrwurms in Rebanlagen bearbeitet, die von ihm verursachten Schäden beschrieben und Strategien zu seiner Befallsregulation entwickelt. Am Boden aktive Ohrwürmer wurden mit Bodenfallen nach BARBER (1931) aufgenommen. In der Laubwand des Rebstockes wurden die Ohrwürmer mit eigens konzipierten Bambusfallen erfasst. F. auricularia ist in pfälzischen Rebanlagen die dominierende Ohrwurm-Art. Im Projektverlauf wurde der univoltine Entwicklungszyklus des Gemeinen Ohrwurms in pfälzischen Rebanlagen vollständig aufgeklärt. In der Vegetationsperiode beeinflussten die Intensität der Bodenbewirtschaftung mit der resultierenden Flächenbegrünung, die Bodenart, die Lufttemperatur, die Luftfeuchtigkeit und die Niederschlagsmenge die Befallsdichten am Rebstock signifikant. Der Ohrwurm-Befall in den Trauben war signifikant von der Kompaktheit und vom Gewicht der Trauben sowie dem Fäulnisanteil pro Traube und von eingewachsenen Rebblättern in den Trauben abhängig. Das Überwinterungs- und Brutverhalten wurde durch die Art und Weise der Bodenbewirtschaftung beeinflusst beziehungsweise gestört.rnLabor- und Freilandversuche haben gezeigt, dass F. auricularia Pilzpathogene wie die Graufäule (Botrytis cinerea PERSOON 1794) und den Pinselschimmel (Penicillium crustosum THOM 1930) auf gesunde Trauben überträgt. Ferner haben Fraßversuche ergeben, dass der Ohrwurm nur faule und vorgeschädigte Beeren anfressen kann und keine intakten Beeren verletzt. Durch analytische und sensorische Untersuchungen wurde festgestellt, dass Ohrwurm-Kot sensorische Fehltöne im Wein verursachen kann. Diese werden durch das im Kot enthaltene 2-Methyl-1,4-benzochinon hervorgerufen, das eine Komponente des arteigenen Abwehrsekrets ist. Da sich der Ohrwurm jahreszeitlich bedingt entweder im Boden oder am Rebstock aufhält, wurden befallsregulierende Maßnahmen im Boden- und Laubwandbereich der Rebanlage durchgeführt. Durch Tiefengrubbern mit Umbruch der Begrünung im Herbst und Frühjahr wurden die überwinternden Imagines und die Gelege geschädigt, so dass in der darauf folgenden Vegetationsperiode die Befallsdichten in der Laubwand geringfügig aber nicht signifikant abnahmen. Die während der Aufwanderungsphase der Ohrwürmer Ende Juni durchgeführte mechanische Störung der Begrünung reduzierte den Ohrwurm-Befall am Rebstock bis zu drei Wochen nach der Maßnahme signifikant. In der Laubwand der Rebstöcke wurden die Befallsdichten durch die Insektizide SpinTor (Wirkstoff Spinosad: 0,01%) und Steward® (Wirkstoff Indoxacarb: 0,0125 %) sowie sekundär durch partielles Entblättern der Laubwand dauerhaft bis zur Traubenlese reduziert. rn
Resumo:
The distribution pattern of European arctic-alpine disjunct species is of growing interest among biogeographers due to the arising variety of inferred demographic histories. In this thesis I used the co-distributed mayfly Ameletus inopinatus and the stonefly Arcynopteryx compacta as model species to investigate the European Pleistocene and Holocene history of stream-inhabiting arctic-alpine aquatic insects. I used last glacial maximum (LGM) species distribution models (SDM) to derive hypotheses on the glacial survival during the LGM and the recolonization of Fennoscandia: 1) both species potentially survived glacial cycles in periglacial, extra Mediterranean refugia, and 2) postglacial recolonization of Fennoscandia originated from these refugia. I tested these hypotheses using mitochondrial sequence (mtCOI) and species specific microsatellite data. Additionally, I used future SDM to predict the impact of climate change induced range shifts and habitat loss on the overall genetic diversity of the endangered mayfly A. inopinatus.rnI observed old lineages, deep splits, and almost complete lineage sorting of mtCOI sequences between mountain ranges. These results support the hypothesis that both species persisted in multiple periglacial extra-Mediterranean refugia in Central Europe during the LGM. However, the recolonization of Fennoscandia was very different between the two study species. For the mayfly A. inopinatus I found strong differentiation between the Fennoscandian and all other populations in sequence and microsatellite data, indicating that Fennoscandia was recolonized from an extra European refugium. High mtCOI genetic structure within Fennoscandia supports a recolonization of multiple lineages from independent refugia. However, this structure was not apparent in the microsatellite data, consistent with secondary contact without sexual incompability. In contrast, the stonefly A. compacta exhibited low genetic structure and shared mtCOI haplotypes among Fennoscandia and the Black Forest, suggesting a shared Pleistocene refugium in the periglacial tundrabelt. Again, there is incongruence with the microsatellite data, which could be explained with ancestral polymorphism or female-biased dispersal. Future SDM projects major regional habitat loss for the mayfly A. inopinatus, particularly in Central European mountain ranges. By relating these range shifts to my population genetic results, I identified conservation units primarily in Eastern Europe, that if preserved would maintain high levels of the present-day genetic diversity of A. inopinatus and continue to provide long-term suitable habitat under future climate warming scenarios.rnIn this thesis I show that despite similar present day distributions the underlying demographic histories of the study species are vastly different, which might be due to differing dispersal capabilities and niche plasticity. I present genetic, climatic, and ecological data that can be used to prioritize conservation efforts for cold-adapted freshwater insects in light of future climate change. Overall, this thesis provides a next step in filling the knowledge gap regarding molecular studies of the arctic-alpine invertebrate fauna. However, there is continued need to explore the phenomenon of arctic-alpine disjunctions to help understand the processes of range expansion, regression, and lineage diversification in Europe’s high latitude and high altitude biota.
Resumo:
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-beta1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.
Resumo:
Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.