820 resultados para information security management assessment
Resumo:
We show how to construct a certificateless key agreement protocol from the certificateless key encapsulation mechanism introduced by \cite{lippold-ICISC_2009} in ICISC 2009 using the \cite{DBLP:conf/acisp/BoydCNP08} protocol from ACISP 2008. We introduce the Canetti-Krawczyk (CK) model for certificateless cryptography, give security notions for Type I and Type II adversaries in the CK model, and highlight the differences to the existing e$^2$CK model discussed by \cite{DBLP:conf/pairing/LippoldBN09}. The resulting CK model is more relaxed thus giving more power to the adversary than the original CK model.
Resumo:
Microphone arrays have been used in various applications to capture conversations, such as in meetings and teleconferences. In many cases, the microphone and likely source locations are known \emph{a priori}, and calculating beamforming filters is therefore straightforward. In ad-hoc situations, however, when the microphones have not been systematically positioned, this information is not available and beamforming must be achieved blindly. In achieving this, a commonly neglected issue is whether it is optimal to use all of the available microphones, or only an advantageous subset of these. This paper commences by reviewing different approaches to blind beamforming, characterising them by the way they estimate the signal propagation vector and the spatial coherence of noise in the absence of prior knowledge of microphone and speaker locations. Following this, a novel clustered approach to blind beamforming is motivated and developed. Without using any prior geometrical information, microphones are first grouped into localised clusters, which are then ranked according to their relative distance from a speaker. Beamforming is then performed using either the closest microphone cluster, or a weighted combination of clusters. The clustered algorithms are compared to the full set of microphones in experiments on a database recorded on different ad-hoc array geometries. These experiments evaluate the methods in terms of signal enhancement as well as performance on a large vocabulary speech recognition task.
Resumo:
Silhouettes are common features used by many applications in computer vision. For many of these algorithms to perform optimally, accurately segmenting the objects of interest from the background to extract the silhouettes is essential. Motion segmentation is a popular technique to segment moving objects from the background, however such algorithms can be prone to poor segmentation, particularly in noisy or low contrast conditions. In this paper, the work of [3] combining motion detection with graph cuts, is extended into two novel implementations that aim to allow greater uncertainty in the output of the motion segmentation, providing a less restricted input to the graph cut algorithm. The proposed algorithms are evaluated on a portion of the ETISEO dataset using hand segmented ground truth data, and an improvement in performance over the motion segmentation alone and the baseline system of [3] is shown.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.
Resumo:
Computer profiling is the automated forensic examination of a computer system in order to provide a human investigator with a characterisation of the activities that have taken place on that system. As part of this process, the logical components of the computer system – components such as users, files and applications - are enumerated and the relationships between them discovered and reported. This information is enriched with traces of historical activity drawn from system logs and from evidence of events found in the computer file system. A potential problem with the use of such information is that some of it may be inconsistent and contradictory thus compromising its value. This work examines the impact of temporal inconsistency in such information and discusses two types of temporal inconsistency that may arise – inconsistency arising out of the normal errant behaviour of a computer system, and inconsistency arising out of deliberate tampering by a suspect – and techniques for dealing with inconsistencies of the latter kind. We examine the impact of deliberate tampering through experiments conducted with prototype computer profiling software. Based on the results of these experiments, we discuss techniques which can be employed in computer profiling to deal with such temporal inconsistencies.
Resumo:
To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.
Resumo:
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
Authorised users (insiders) are behind the majority of security incidents with high financial impacts. Because authorisation is the process of controlling users’ access to resources, improving authorisation techniques may mitigate the insider threat. Current approaches to authorisation suffer from the assumption that users will (can) not depart from the expected behaviour implicit in the authorisation policy. In reality however, users can and do depart from the canonical behaviour. This paper argues that the conflict of interest between insiders and authorisation mechanisms is analogous to the subset of problems formally studied in the field of game theory. It proposes a game theoretic authorisation model that can ensure users’ potential misuse of a resource is explicitly considered while making an authorisation decision. The resulting authorisation model is dynamic in the sense that its access decisions vary according to the changes in explicit factors that influence the cost of misuse for both the authorisation mechanism and the insider.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but such approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks on the other hand, optimise the parameters of speech enhancement algorithms based on state sequences generated by a speech recogniser for utterances of known transcriptions. Previous applications of LIMA frameworks have generated a set of global enhancement parameters for all model states without taking in account the distribution of model occurrence, making optimisation susceptible to favouring frequently occurring models, in particular silence. In this paper, we demonstrate the existence of highly disproportionate phonetic distributions on two corpora with distinct speech tasks, and propose to normalise the influence of each phone based on a priori occurrence probabilities. Likelihood analysis and speech recognition experiments verify this approach for improving ASR performance in noisy environments.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.
Resumo:
Reputation and proof-of-work systems have been outlined as methods bot masters will soon use to defend their peer-to-peer botnets. These techniques are designed to prevent sybil attacks, such as those that led to the downfall of the Storm botnet. To evaluate the effectiveness of these techniques, a botnet that employed these techniques was simulated, and the amount of resources required to stage a successful sybil attack against it measured. While the proof-of-work system was found to increase the resources required for a successful sybil attack, the reputation system was found to lower the amount of resources required to disable the botnet.