958 resultados para implant preload


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone loss may result from remodelling initiated by implant stress protection. Quantifying remodelling requires bone density distributions which can be obtained from computed tomography scans. Pre-operative scans of large animals however are rarely possible. This study aimed to determine if the contra-lateral bone is a suitable control for the purpose of quantifying bone remodelling. CT scans of 8 pairs of ovine tibia were used to determine the likeness of left and right bones. The deviation between the outer surfaces of the bone pairs was used to quantify geometric similarity. The density differences were determined by dividing the bones into discrete volumes along the shaft of the tibia. Density differences were also determined for fractured and contra-lateral bone pairs to determine the magnitude of implant related remodelling. Left and right ovine tibiae were found to have a high degree of similarity with differences of less than 1.0 mm in the outer surface deviation and density difference of less than 5% in over 90% of the shaft region. The density differences (10–40%) as a result of implant related bone remodelling were greater than left-right differences. Therefore, for the purpose of quantifying bone remodelling in sheep, the contra-lateral tibia may be considered an alternative to a pre-operative control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is likely that effective application of cell-laden implants for cartilage defects depends on retention of implanted cells and interaction between implanted and host cells. The objectives of this study were to characterize stratified cartilaginous constructs seeded sequentially with superficial (S) and middle (M) chondrocyte subpopulations labelled with fluorescent cell tracking dye PKH26 (*) and determine the degree to which these stratified cartilaginous constructs maintain their architecture in vivo after implantation in mini-pigs for 1 week. Alginate-recovered cells were seeded sequentially to form stratified S*/M (only S cells labelled) and S*/M* (both S and M cells labelled) constructs. Full-thickness defects (4 mm diameter) were created in the patellofemoral groove of adult Yucatan mini-pigs and filled with portions of constructs or left empty. Constructs were characterized biochemically, histologically, and biomechanically, and stratification visualized and quantified, before and after implant. After 1 week, animals were sacrificed and implants retrieved. After 1 week in vivo, glycosaminoglycan and collagen content of constructs remained similar to that at implant, whereas DNA content increased. Histological analyses revealed features of an early repair response, with defects filled with tissues containing little matrix and abundant cells. Some implanted (PKH26-labeled) cells persisted in the defects, although constructs did not maintain a stratified organization. Of the labelled cells, 126 +/- 38% and 32 +/- 8% in S*/M and S*/M* constructs, respectively, were recovered. Distribution of labelled cells indicated interactions between implanted and host cells. Longer-term in vivo studies will be useful in determining whether implanted cells are sufficient to have a positive effect in repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality.----- ----- Methods: We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type.----- ----- Results: Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point.----- ----- Interpretation: This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL’s pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Simvastatin has been shown to enhance osseointegration of pure titanium implants in osteoporotic rats. This study aimed to evaluate the relationship between the serum level of bone formation markers and the osseointegration of pure titanium implants in osteoporotic rats treated with simvastatin. Materials and methods: Fifty-four female Sprague Dawley rats, aged 3 months old, were randomly divided into three groups: Sham-operated group (SHAM; n=18), ovariectomized group (OVX; n=18), and ovariectomized with Simvastatin treatment group (OVX+SIM; n=18). Fifty-six days after ovariectomy, screw-shaped titanium implants were inserted into the tibiae. Simvastatin was administered orally at 5mg/kg each day after the placement of the implant in the OVX+SIM group. The animals were sacrificed at either 28 or 84 days after implantation and the undecalcified tissue sections were processed for histological analysis. Total alkaline phosphatase (ALP), bone specific alkaline phosphatase (BALP) and bone Gla protein (BGP) were measured in all animal sera collected at the time of euthanasia and correlated with the histological assessment of osseointegration. Results: The level of ALP in the OVX group was higher than the SHAM group at day 28, with no differences between the three groups at day 84. The level of BALP in the OVX+SIM group was significantly higher than both OVX and SHAM groups at days 28 and 84. Compared with day 28, the BALP level of all three groups showed a significant decrease at day 84. There were no significant differences in BGP levels between the three groups at day 28, but at day 84 the OVX+SIM group showed significantly higher levels than both the OVX and SHAM groups. There was a significant increase in BGP levels between days 28 and 84 in the OVX+SIM group. The serum bone marker levels correlated with the histological assessment showing reduced osseointegration in the OVX compared to the SHAM group which is subsequently reversed in the OVX+SIM group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periprosthetic fractures are increasingly frequent. The fracture may be located over the shaft of the prosthesis, at its tip or below (21). The treatment of explosion fractures is difficult because the shaft blocks the application of implants, like screws, which need to penetrate the medullary cavity. The cerclage, as a simple periosteal loop, made of wire or more recently cable, does not only avoid the medullary cavity. Its centripetal mode of action is well suited for reducing and maintaining radially displaced fractures. Furthermore, the cerclage lends itself well for minimally invasive internal fixation. New insight challenges the disrepute of which the cerclage technology suffered for decades. The outcome of cerclage fixation benefits from an improved understanding of its technology, mechano-biology and periosteal blood supply. Preconceived and generally accepted opinions like "strangulation of blood supply" need to be re-examined. Recent mechanical evaluations (22) demonstrate that the wire application may be improved but cable is superior in hand- ling, maintenance of tension and strength. Beside the classical concepts of absolute and relative stability a defined stability condition needs consideration. It is typical for cerclage. Called "loose-lock stability" it specifies the situation where a loosened implant allows first unimpeded displacement changing abruptly into a locked fixation preventing further dislocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 24 months after thoracoscopic anterior scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) occurrence of post-operative implant failure, and (v) lateral position of the fusion mass in the intervertebral disc space. We propose that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-invasive vibration analysis has been used extensively to monitor the progression of dental implant healing and stabilization. It is now being considered as a method to monitor femoral implants in transfemoral amputees. This paper evaluates two modal analysis excitation methods and investigates their capabilities in detecting changes at the interface between the implant and the bone that occur during osseointegration. Excitation of bone-implant physical models with the electromagnetic shaker provided higher coherence values and a greater number of modes over the same frequency range when compared to the impact hammer. Differences were detected in the natural frequencies and fundamental mode shape of the model when the fit of the implant was altered in the bone. The ability to detect changes in the model dynamic properties demonstrates the potential of modal analysis in this application and warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 2yrs after thoracoscopic surgery, and to explore the relationship between fusion scores and rod diameter, graft type, fusion level, implant failure, and lateral position in the disc space. This study suggests that moderate fusion scores secure successful clinical outcomes in thoracoscopic scoliosis surgery.