870 resultados para immunoglobulin E
Resumo:
Ever since monoclonal antibodies were produced in 1975 with mouse myeloma cells there has been interest in developing human myeloma cultures for the production of monoclonal antibodies. However, despite multiple attempts, no human myeloma line suitable for hybridoma production has been described. Here we report the derivation of a hypoxanthine–aminopterin–thymidine-sensitive and ouabain-resistant human myeloma cell line (Karpas 707H) that contains unique genetic markers. We show that this line is useful for the generation of stable human hybridomas. It can easily be fused with ouabain-sensitive Epstein–Barr virus-transformed cells as well as with fresh tonsil and blood lymphocytes, giving rise to stable hybrids that continuously secrete very large quantities of human immunoglobulins. The derived hybrids do not lose immunoglobulin secretion over many months of continuous growth. The availability of this cell line should enable the in vitro immortalization of human antibody-producing B cells that are formed in vivo. The monoclonal antibodies produced may have advantages in immunotherapy.
Resumo:
Pseudogenes are non-functioning copies of genes in genomic DNA, which may either result from reverse transcription from an mRNA transcript (processed pseudogenes) or from gene duplication and subsequent disablement (non-processed pseudogenes). As pseudogenes are apparently ‘dead’, they usually have a variety of obvious disablements (e.g., insertions, deletions, frameshifts and truncations) relative to their functioning homologs. We have derived an initial estimate of the size, distribution and characteristics of the pseudogene population in the Caenorhabditis elegans genome, performing a survey in ‘molecular archaeology’. Corresponding to the 18 576 annotated proteins in the worm (i.e., in Wormpep18), we have found an estimated total of 2168 pseudogenes, about one for every eight genes. Few of these appear to be processed. Details of our pseudogene assignments are available from http://bioinfo.mbb.yale.edu/genome/worm/pseudogene. The population of pseudogenes differs significantly from that of genes in a number of respects: (i) pseudogenes are distributed unevenly across the genome relative to genes, with a disproportionate number on chromosome IV; (ii) the density of pseudogenes is higher on the arms of the chromosomes; (iii) the amino acid composition of pseudogenes is midway between that of genes and (translations of) random intergenic DNA, with enrichment of Phe, Ile, Leu and Lys, and depletion of Asp, Ala, Glu and Gly relative to the worm proteome; and (iv) the most common protein folds and families differ somewhat between genes and pseudogenes—whereas the most common fold found in the worm proteome is the immunoglobulin fold and the most common ‘pseudofold’ is the C-type lectin. In addition, the size of a gene family bears little overall relationship to the size of its corresponding pseudogene complement, indicating a highly dynamic genome. There are in fact a number of families associated with large populations of pseudogenes. For example, one family of seven-transmembrane receptors (represented by gene B0334.7) has one pseudogene for every four genes, and another uncharacterized family (represented by gene B0403.1) is approximately two-thirds pseudogenic. Furthermore, over a hundred apparent pseudogenic fragments do not have any obvious homologs in the worm.
Resumo:
CD1 is an MHC class I-like antigen-presenting molecule consisting of a heavy chain and β2-microglobulin light chain. The in vitro refolding of synthetic MHC class I molecules has always required the presence of ligand. We report here the use of a folding method using an immobilized chaperone fragment, a protein disulphide isomerase, and a peptidyl-prolyl cis-trans isomerase (oxidative refolding chromatography) for the fast and efficient assembly of ligand-free and ligand-associated CD1a and CD1b, starting with material synthesized in Escherichia coli. The results suggest that “empty” MHC class I-like molecules can assemble and remain stable at physiological temperatures in the absence of ligand. The use of oxidative refolding chromatography thus is extended to encompass complex multisubunit proteins and specifically to members of the extensive, functionally diverse and important immunoglobulin supergene family of proteins, including those for which a ligand has yet to be identified.
Resumo:
By using sensitive homology-search and gene-finding programs, we have found that a genomic region from the tip of the short arm of human chromosome 16 (16p13.3) encodes a putative secreted protein consisting of a domain related to the whey acidic protein (WAP) domain, a domain homologous with follistatin modules of the Kazal-domain family (FS module), an immunoglobulin-related domain (Ig domain), two tandem domains related to Kunitz-type protease inhibitor modules (KU domains), and a domain belonging to the recently defined NTR-module family (NTR domain). The gene encoding these WAP, FS, Ig, KU, and NTR modules (hereafter referred to as the WFIKKN gene) is intron-depleted—its single 1,157-bp intron splits the WAP module. The validity of our gene prediction was confirmed by sequencing a WFIKKN cDNA cloned from a lung cDNA library. Studies on the tissue-expression pattern of the WFIKKN gene have shown that the gene is expressed primarily in pancreas, kidney, liver, placenta, and lung. As to the function of the WFIKKN protein, it is noteworthy that it contains FS, WAP, and KU modules, i.e., three different module types homologous with domains frequently involved in inhibition of serine proteases. The protein also contains an NTR module, a domain type implicated in inhibition of zinc metalloproteinases of the metzincin family. On the basis of its intriguing homologies, we suggest that the WFIKKN protein is a multivalent protease inhibitor that may control the action of multiple types of serine proteases as well as metalloproteinase(s).
Resumo:
The quantitative analysis with immunogold-electron microscopy using a single-affinity-purified anti-NADH-glutamate synthase (GOGAT) immunoglobulin G (IgG) as the primary antibody showed that the NADH-GOGAT protein was present in various forms of plastids in the cells of the epidermis and exodermis, in the cortex parenchyma, and in the vascular parenchyma of root tips (<10 mm) of rice (Oryza sativa) seedlings supplied with 1 mm NH4+ for 24 h. The values of the mean immunolabeling density of plastids were almost equal among these different cell types in the roots. However, the number of plastids per individual cell type was not identical, and some parts of the cells in the epidermis and exodermis contained large numbers of plastids that were heavily immunolabeled. Although there was an indication of labeling in the mitochondria using the single-affinity-purified anti-NADH-GOGAT IgG, this was not confirmed when a twice-affinity-purified IgG was used, indicating an exclusively plastidial location of the NADH-GOGAT protein in rice roots. These results, together with previous work from our laboratory (K. Ishiyama, T. Hayakawa, and T. Yamaya [1998] Planta 204: 288–294), suggest that the assimilation of exogeneously supplied NH4+ ions is primarily via the cytosolic glutamine synthetase/plastidial NADH-GOGAT cycle in specific regions of the epidermis and exodermis in rice roots. We also discuss the role of the NADH-GOGAT protein in vascular parenchyma cells.
Resumo:
The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.
Resumo:
Concerted evolution is often invoked to explain the diversity and evolution of the multigene families of major histocompatibility complex (MHC) genes and immunoglobulin (Ig) genes. However, this hypothesis has been controversial because the member genes of these families from the same species are not necessarily more closely related to one another than to the genes from different species. To resolve this controversy, we conducted phylogenetic analyses of several multigene families of the MHC and Ig systems. The results show that the evolutionary pattern of these families is quite different from that of concerted evolution but is in agreement with the birth-and-death model of evolution in which new genes are created by repeated gene duplication and some duplicate genes are maintained in the genome for a long time but others are deleted or become nonfunctional by deleterious mutations. We found little evidence that interlocus gene conversion plays an important role in the evolution of MHC and Ig multigene families.
Resumo:
ZO-1 is an actin filament (F-actin)–binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through β- and α-catenins as one of many F-actin–binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin–binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin–β-catenin complex through α-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and α-catenin–deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only α-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of α-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with α-catenin but also with the nectin-afadin system.
Resumo:
We have investigated the structure of the cell adhesion molecule L1 by electron microscopy. We were particularly interested in the conformation of the four N-terminal immunoglobulin domains, because x-ray diffraction showed that these domains are bent into a horseshoe shape in the related molecules hemolin and axonin-1. Surprisingly, rotary-shadowed specimens showed the molecules to be elongated, with no indication of the horseshoe shape. However, sedimentation data suggested that these domains of L1 were folded into a compact shape in solution; therefore, this prompted us to look at the molecules by an alternative technique, negative stain. The negative stain images showed a compact shape consistent with the expected horseshoe conformation. We speculate that in rotary shadowing the contact with the mica caused a distortion of the protein, weakening the bonds forming the horseshoe and permitting the molecule to extend. We have thus confirmed that the L1 molecule is primarily in the horseshoe conformation in solution, and we have visualized for the first time its opening into an extended conformation. Our study resolves conflicting interpretations from previous electron microscopy studies of L1.
Resumo:
We have demonstrated the assembly of two-dimensional patterns of functional antibodies on a surface. In particular, we have selectively adsorbed micrometer-scale regions of biotinylated immunoglobulin that exhibit specific antigen binding after adsorption. The advantage of this technique is its potential adaptability to adsorbing arbitrary proteins in tightly packed monolayers while retaining functionality. The procedure begins with the formation of a self-assembled monolayer of n-octadecyltrimethoxysilane (OTMS) on a silicon dioxide surface. This monolayer can then be selectively removed by UV photolithography. Under appropriate solution conditions, the OTMS regions will adsorb a monolayer of bovine serum albumin (BSA), while the silicon dioxide regions where the OTMS has been removed by UV light will adsorb less than 2% of a monolayer, thus creating high contrast patterned adsorption of BSA. The attachment of the molecule biotin to the BSA allows the pattern to be replicated in a layer of streptavidin, which bonds to the biotinylated BSA and in turn will bond an additional layer of an arbitrary biotinylated protein. In our test case, functionality of the biotinylated goat antibodies raised against mouse immunoglobulin was demonstrated by the specific binding of fluorescently labeled mouse IgG.
Resumo:
The interaction of poliovirus with its cell receptor initiates conformational changes that lead to uncoating of the viral RNA. Three types of genetic analyses have been used to study the poliovirus-receptor interaction: (i) mutagenesis of the poliovirus receptor (PVR), (ii) selection of viral mutants resistant to neutralization with soluble PVR, and (iii) selection of viral variants adapted to use mutant PVRs. The results of these studies show that a small portion of the first immunoglobulin-like domain of PVR contacts viral residues within a deep depression on the surface of the capsid that encircles the fivefold axis of symmetry. Viral capsid residues that influence the interaction with PVR are also found in locations such as the capsid interior that cannot directly contact PVR. These mutations might influence the ability of the capsid to undergo receptor-mediated conformational transitions that are necessary for high-affinity interactions with PVR.
Resumo:
Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration.
Resumo:
Haemophilus influenzae is a Gram-negative bacterium that represents a common cause of human disease. Disease due to this organism begins with colonization of the upper respiratory mucosa, a process facilitated by adhesive fibers called pili. In the present study, we investigated the structure and assembly of H. influenzae pili. Examination of pili by electron microscopy using quick-freeze, deep-etch and immunogold techniques revealed the presence of two distinct subassemblies, including a flexible two-stranded helical rod comprised of HifA and a short, thin, distal tip structure containing HifD. Genetic and biochemical studies demonstrated that the biogenesis of H. influenzae pili is dependent on a periplasmic chaperone called HifB, which belongs to the PapD family of immunoglobulin-like chaperones. HifB bound directly to HifA and HifD, forming HifB-HifA and HifB-HifD complexes, which were purified from periplasmic extracts by ion-exchange chromatography. Continued investigation of the biogenesis of H. influenzae pili should provide general insights into organelle development and may suggest novel strategies for disease prevention.
Resumo:
Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.
Resumo:
Two genetic events contribute to the development of endemic Burkitt lymphoma (BL) infection of B lymphocytes with Epstein-Barr virus (EBV) and the activation of the protooncogene c-myc through chromosomal translocation. The viral genes EBV nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for transformation of primary human B cells by EBV in vitro; however, these genes are not expressed in BL cells in vivo. To address the question whether c-myc activation might abrogate the requirement of the EBNA2 and LMP1 function, we have introduced an activated c-myc gene into an EBV-transformed cell line in which EBNA2 was rendered estrogen-dependent through fusion with the hormone binding domain of the estrogen receptor. The c-myc gene was placed under the control of regulatory elements of the immunoglobulin kappa locus composed a matrix attachment region, the intron enhancer, and the 3' enhancer. We show here that transfection of a c-myc expression plasmid followed by selection for high MYC expression is capable of inducing continuous proliferation of these cells in the absence of functional EBNA2 and LMP1. c-myc-induced hormone-independent proliferation was associated with a dramatic change in the growth behavior as well as cell surface marker expression of these cells. The typical lymphoblastoid morphology and phenotype of EBV-transformed cells completely changed into that of BL cells in vivo. We conclude that the phenotype of BL cells reflects the expression pattern of viral and cellular genes rather than its germinal center origin.