959 resultados para imaging of connective tissues
Resumo:
Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.
Resumo:
PURPOSE: We preoperatively assessed neurovesical function and spinal cord function in children with anorectal malformations. In cases of neurovesical dysfunction we looked for an association with vertebral malformation or myelodysplasia. MATERIALS AND METHODS: We prospectively evaluated 80 children with anorectal malformations via preoperative urodynamics and magnetic resonance imaging of the spine. Bladder compliance and volume, detrusor activity and vesicosphincteric synergy during voiding allowed urodynamic evaluation. Results were reported according to Wingspread and Krickenbeck classifications of anorectal malformations. RESULTS: Urodynamic findings were pathological in 14 children (18%). Pathological evaluations did not seem related to type of fistula or level of anorectal malformation. Vertebral anomalies were seen in 34 patients (43%) and myelodysplasia in 16 (20%). Neither vertebral anomaly nor myelodysplasia seemed associated with type of fistula or severity of anorectal malformation. Of 14 children with pathological urodynamics no vertebral anomaly or myelodysplasia was found in 7. Of 66 children with normal urodynamics 40 presented with vertebral or spinal malformation. CONCLUSIONS: Lower urinary tract dysfunction is common in patients with anorectal malformations. Normal spine or spinal cord does not exclude neurovesical dysfunction. Myelodysplasia or vertebral anomaly does not determine lower urinary tract dysfunction. Thus, we recommend preoperative urodynamic assessment of the bladder and magnetic resonance imaging of the spine in children with anorectal malformations.
Resumo:
PURPOSE: To investigate the ability of fibroblast growth factor (FGF) 2-saporin to prevent lens regrowth in the rabbit. METHODS: Chemically conjugated and genetically fused FGF2-saporin (made in Escherichia coli) were used. Extracapsular extraction of the lens was performed on the rabbit, and the cytotoxin either was injected directly into the capsule bag or was administered by FGF2-saporin-coated, heparin surface-modified (HSM) polymethylmethacrylate intraocular lenses. The potential of the conjugate was checked by slit lamp evaluation of capsular opacification and by measuring crystallin synthesis. Toxin diffusion and sites of toxin binding were assessed by immunohistochemistry. Possible toxicity was determined by histologic analysis of ocular tissues. RESULTS: FGF2-saporin effectively inhibited lens regrowth when it was injected directly into the capsular bag. However, high concentration of the toxin induced transient corneal edema and loss of pigment in the iris. Intraocular lenses coated with FGF2-saporin reduced lens regrowth and crystallin synthesis without any detectable clinical side effect. After implantation, FGF2-saporin was shown to have bound to the capsules and, to a lesser extent, to the iris; no histologic damage was found on ocular tissues as a result of implantation of drug-loaded HSM intraocular lenses. CONCLUSIONS: Chemically conjugated (FGF2-SAP) and genetically fused FGF2-saporin (rFGF2-SAP) bound to HSM intraocular lenses can prevent lens regrowth in the rabbit.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.
Resumo:
Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.
Resumo:
The quantification of gene expression at the single cell level uncovers novel regulatory mechanisms obscured in measurements performed at the population level. Two methods based on microscopy and flow cytometry are presented to demonstrate how such data can be acquired. The expression of a fluorescent reporter induced upon activation of the high osmolarity glycerol MAPK pathway in yeast is used as an example. The specific advantages of each method are highlighted. Flow cytometry measures a large number of cells (10,000) and provides a direct measure of the dynamics of protein expression independent of the slow maturation kinetics of the fluorescent protein. Imaging of living cells by microscopy is by contrast limited to the measurement of the matured form of the reporter in fewer cells. However, the data sets generated by this technique can be extremely rich thanks to the combinations of multiple reporters and to the spatial and temporal information obtained from individual cells. The combination of these two measurement methods can deliver new insights on the regulation of protein expression by signaling pathways.
Resumo:
BACKGROUND AND PURPOSE: To determine whether infarct core or penumbra is the more significant predictor of outcome in acute ischemic stroke, and whether the results are affected by the statistical method used. METHODS: Clinical and imaging data were collected in 165 patients with acute ischemic stroke. We reviewed the noncontrast head computed tomography (CT) to determine the Alberta Score Program Early CT score and assess for hyperdense middle cerebral artery. We reviewed CT-angiogram for site of occlusion and collateral flow score. From perfusion-CT, we calculated the volumes of infarct core and ischemic penumbra. Recanalization status was assessed on early follow-up imaging. Clinical data included age, several time points, National Institutes of Health Stroke Scale at admission, treatment type, and modified Rankin score at 90 days. Two multivariate regression analyses were conducted to determine which variables predicted outcome best. In the first analysis, we did not include recanalization status among the potential predicting variables. In the second, we included recanalization status and its interaction between perfusion-CT variables. RESULTS: Among the 165 study patients, 76 had a good outcome (modified Rankin score ≤2) and 89 had a poor outcome (modified Rankin score >2). In our first analysis, the most important predictors were age (P<0.001) and National Institutes of Health Stroke Scale at admission (P=0.001). The imaging variables were not important predictors of outcome (P>0.05). In the second analysis, when the recanalization status and its interaction with perfusion-CT variables were included, recanalization status and perfusion-CT penumbra volume became the significant predictors (P<0.001). CONCLUSIONS: Imaging prediction of tissue fate, more specifically imaging of the ischemic penumbra, matters only if recanalization can also be predicted.
Resumo:
OBJECTIVES: To investigate unenhanced postmortem 3-T MR imaging (pmMRI) for the detection of pulmonary thrombembolism (PTE) as cause of death. METHODS: In eight forensic cases dying from a possible cardiac cause but with homogeneous myocardium at cardiac pmMRI, additional T2w imaging of the pulmonary artery was performed before forensic autopsy. Imaging was carried out on a 3-T MR system in the axial and main pulmonary artery adapted oblique orientation in situ. In three cases axial T2w pmMRI of the lower legs was added. Validation of imaging findings was performed during forensic autopsy. RESULTS: All eight cases showed homogeneous material of intermediate signal intensity within the main pulmonary artery and/or pulmonary artery branches. Autopsy confirmed the MR findings as pulmonary artery thrombembolism. At lower leg imaging unilateral dilated veins and subcutaneous oedema with or without homogeneous material of intermediate signal intensity within the popliteal vein were found. CONCLUSIONS: Unenhanced pmMRI demonstrates pulmonary thrombembolism in situ. PmMR may serve as an alternative to clinical autopsy, especially when consent cannot be obtained. KEY POINTS: ? Postmortem MRI (pmMRI) provides an alternative to clinical autopsy ? Fatal pulmonary thrombembolism (PTE) can now be diagnosed using postmortem MRI (pmMRI). ? Special attention has to be drawn to the differentiation of postmortem clots.
Resumo:
Non-insulin-dependent, or type II, diabetes mellitus is characterized by a progressive impairment of glucose-induced insulin secretion by pancreatic beta cells and by a relative decreased sensitivity of target tissues to the action of this hormone. About one third of type II diabetic patients are treated with oral hypoglycemic agents to stimulate insulin secretion. These drugs however risk inducing hypoglycemia and, over time, lose their efficacy. An alternative treatment is the use of glucagon-like peptide-1 (GLP-1), a gut peptidic hormone with a strong insulinotropic activity. Its activity depends of the presence of normal blood glucose concentrations and therefore does not risk inducing hypoglycemia. GLP-1 can correct hyperglycemia in diabetic patients, even in those no longer responding to hypoglycemic agents. Because it is a peptide, GLP-1 must be administered by injection; this may prevent its wide therapeutic use. Here we propose to use cell lines genetically engineered to secrete a mutant form of GLP-1 which has a longer half-life in vivo but which is as potent as the wild-type peptide. The genetically engineered cells are then encapsulated in semi-permeable hollow fibers for implantation in diabetic hosts for constant, long-term, in situ delivery of the peptide. This approach may be a novel therapy for type II diabetes.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs¿ teeth after root canal filling with different materials. Forty roots from dogs¿ premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated amonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
The cell surface receptor Fas (FasR, Apo-1, CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in the peripheral deletion of autoimmune cells, activation-induced T cell death, and one of the two major cytolytic pathways mediated by CD8+ cytolytic T cells. To gain further understanding of the Fas system., we have analyzed Fas and FasL expression during mouse development and in adult tissues. In developing mouse embryos, from 16.5 d onwards, Fas mRNA is detectable in distinct cell types of the developing sinus, thymus, lung, and liver, whereas FasL expression is restricted to submaxillary gland epithelial cells and the developing nervous system. Significant Fas and FasL expression were observed in several nonlymphoid cell types during embryogenesis, and generally Fas and FasL expression were not localized to characteristic sites of programmed cell death. In the adult mouse, RNase protection analysis revealed very wide expression of both Fas and FasL. Several tissues, including the thymus, lung, spleen, small intestine, large intestine, seminal vesicle, prostate, and uterus, clearly coexpress the two genes. Most tissues constitutively coexpressing Fas and FasL in the adult mouse are characterized by apoptotic cell turnover, and many of those expressing FasL are known to be immune privileged. It may be, therefore, that the Fas system is implicated in both the regulation of physiological cell turnover and the protection of particular tissues against potential lymphocyte-mediated damage.
Resumo:
Traditionally, thoracic aortic rupture, suspected after blunt thoracic trauma, is characterized by a chest radiograph showing a widened mediastinum. The diagnostic machinery consecutively activated still depends heavily on the pressure as additional traumatic lesions. A patient with additional cranio-cerebral trauma would typically undergo contrast-enhanced computed tomography or magnetic resonance imaging of head, chest, and other regions. In a number of patients these analyses would confirm the presence of blood in the mediastinum without formal proof of an aortic disruption. This is because mediastinal hematomas may be caused not only by an aortic rupture, but also by numerous other blood sources including fractures of the spine and other macro- and microvascular lesions providing similar images. Therefore, aortic angiography became our preferred diagnostic tool to identify or rule out acute traumatic lesions of not only the aorta but with great vessels. However recently, a number of traumatic aortic transsections have been identified by transoesophageal echocardiography (TEE). TEE has the additional advantage of being a bed-side procedure providing additional information about cardiac function. The latter analysis allows for identification and quantification of cardiac contusions, post-traumatic myocardial infarctions, and valvar lesions which are of prime importance to develop an adequate surgical strategy and to assess the risk of the numerous emergency procedures required in patients with polytrauma. The standard approach for repair of isthmic aortic rupture is through a lateral thoracotomy. Distal and proximal control of the aorta can be achieved in a substantial number of cases before complete aortic rupture occurs and a higher proportion of direct suture repair can be achieved under such circumstances. Most proximal descending aortic procedures are performed without cardiopulmonary bypass (clamp and go) but paraplegia may occur before, during, or after the procedure. Ascending aortic lesions and disruption of the aortic arch, the supra-aortic vessels, the main pulmonary arteries, the great veins as well as cardiac lesions are best approached through a sternotomy, which may have to be extended. Cardiopulmonary bypass allowing for deep hypothermia and circulatory arrest is often required and carries its own complications. It is not clear whether the increasing proportion of ascending aortic and cardiac lesions which are observed nowadays are due to a change in trauma mechanics (i.e., speed limits, seat belts, air-bags), an improvement of the diagnostic tools or both.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
RESUME : Les dermatophytes sont les agents infectieux les plus fréquents responsables de la plupart des mycoses superficielles chez les humains et chez les animaux. Ces infections, dermatophytoses, également appelées tineas ou teignes, sont fréquentes et causent des problèmes de santé publique au niveau mondial. La capacité d'envahir et de progresser au sein des structures kératinisées est probablement liée à la sécrétion de différentes enzymes kératinolytiques, qui sont considérées comme la principale caractéristique liée à la pathogénicité de ces champignons. L'objectif de ma thèse a été premièrement de progresser dans l'identification et la caractérisation des nouvelles protéines sécrétées, afin de mieux comprendre a) la capacité globale des dermatophytes à envahir les structures kératinisées, et b) les différences dans la virulence et la spécificité d'hôte que présentent les espèces étudiées .Pour progresser dans l'identification et la caractérisation de ces nouvelles protéines, les secretomes de six espèces de dermatophytes (Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii et Trichophyton tonsurans) ont été étudiés. Bien qu'il y ait un niveau globalement élevé de similitude entre les protéases sécrétées, les différentes espèces de dermatophytes sécrètent des profiles protéiques distincts lorsqu'elles sont cultivées dans les mêmes conditions de culture, et donc une signature spécifique a pu être associé à chaque espèce. Ces profiles ont été un outil avantageux pour identifier et cartographier les protéines orthologues aux six espèces et ont aussi permit la discrimination d'espèces très proches comme T. tonsurans et T. equinum qui ne peuvent pas être différenciées par l'ADN ribosomal. Ce travail également présente ce que l'on croit être la première identification global des protéines sécrétées par les dermatophytes dans des conditions de culture que incitent l'activité protéolytique extracellulaire. Ce catalogue de protéines, comprenant des endo- and exo- proteases, autres hydrolases, oxydoreductases et des protéines avec fonction inconnue, représente probablement le spectre d'enzymes qui permettent la dégradation des tissus kératinisés en composés qui peuvent être assimilés par le champignon. Les résultats suggèrent qu'un changement écologique pourrait être associé à une expression différentielle des gènes codant les protéines sécrétées, en particulier, les protéases, plutôt qu'à des divergences génétiques au niveau des gènes codant les protéines orthologues. Une sécrétion différentielle des protéines par les dermatophytes pourrait également être responsable de la variabilité inflammatoire qui causent ces agents infectieux chez les différents hôtes. Par conséquent, les protéines identifiées ici sont également importantes pour faire la lumière sur la réponse immunitaire de l'hôte au cours du processus infectieux. SUMMARY : Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Dermatophytoses, also called tineas or ringworm, are frequent and cause public health problems worldwide. The secretion of different keratinolytic enzymes is believed to be a key pathogenicity-related characteristic of these fungi. The aim of this work was first to progress in the identification and characterization of novel secreted proteins, in order to better understand a) the overall capability of dermatophytes to invade keratinised structures, and b) differences in virulence and host-specificity of the investigated species. To progress in the identification and characterization of novel proteins, the secretomes from Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii and Trichophyton tonsurans were studied. Although there is a high global level of similarity among the secreted proteases, different dermatophyte species produce distinct patterns of proteins when grown in the same culture medium, and so a specific signature could be associated to each species. These patterns were useful to identify and map orthologous proteins among the six species, as well as to discriminate the closely related species T. tonsurans and T. equinum, which cannot be differentiated by ribosomal DNA. This work also presents the first in-depth identification of the major proteins secreted by dermatophytes growing under conditions promoting extracellular proteolytic activity. This catalogue of proteins, which include several endo- and exo- proteases, other hydrolases, oxydoreductases, and proteins of unknown function, probably represents the spectrum of enzymes that allow the degradation of keratinized tissues into compounds which can be assimilated by the fungus. The results suggest that ecological switching could be related to a differential expression of genes encoding secreted proteins, particularly, proteases, rather than genetic divergences of the genes encoding orthologous proteins. Differential secretion of proteins by Dermatophyte species could also be responsible for the variable inflammation caused by the infectious agent within the host. Therefore, the proteins here identified are also important to shed light into the immune response of the host during the infection process.