905 resultados para identification and validation of knowledge
Resumo:
The identification and validation of candidate genes related to traits of interest is a time consuming and expensive process and the homology among genes from different species can facilitate the identification of genes of the target species from the genomic information of a model species. This study aimed to quantify the expression of homologous rice genes previously related to drought tolerance in Arabidopsis. Five genes (CPK6, PLDa, GluR2, CesA8, and EIN2) were identified in rice by the homology of the amino acid sequence between rice and Arabidopsis. The genotypes Douradão (drought tolerant) and Primavera (drought susceptible) were subjected to a water deficit experiment, and subsequently evaluated for gene expression by qPCR for the five homologous and Lsi1 genes. The qPCR analysis clearly showed that the five homologous genes were expressed in rice, which is an indication that these genes could preserve their function in rice as a response to drought. In Douradão, of the five homologous genes, all but OsGluR2 displayed an increase in the average expression in drought treatment when compared to the control, while in Primavera, the average expression of the five genes did not differ between the control and drought treatment. In Douradão, the OsPLDa1, which showed the higher expression level in drought in relation to the control (10.82), significantly increased the gene expression in the leaf and root tissues as a response to drought, in both vegetative and reproductive stages, whereas in Primavera, this gene was suppressed in both tissues and stages under drought. Therefore, the OsPLDa1 gene was the most important in relation to drought response and is an interesting candidate for further studies in developing rice cultivars that are more tolerant to this stress.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.
Resumo:
In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.
Resumo:
The objective of the thesis project, developed within the Line Control & Software Engineering team of G.D company, is to analyze and identify the appropriate tool to automate the HW configuration process using Beckhoff technologies by importing data from an ECAD tool. This would save a great deal of time, since the I/O topology created as part of the electrical planning is presently imported manually in the related SW project of the machine. Moreover, a manual import is more error-prone because of human mistake than an automatic configuration tool. First, an introduction about TwinCAT 3, EtherCAT and Automation Interface is provided; then, it is analyzed the official Beckhoff tool, XCAD Interface, and the requirements on the electrical planning to use it: the interface is realized by means of the AutomationML format. Finally, due to some limitations observed, the design and implementation of a company internal tool is performed. Tests and validation of the tool are performed on a sample production line of the company.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Ciências da Educação - Especialidade Educação Especial
Resumo:
L'objectiu del present Projecte final de carrera consisteix en la realització d'un dissenye implementació d'un lloc web de venta de llibres al detall.El sistema mostra a l'usuari una sèrie de productes. Tots aquest productespoden ser adquirits per l'usuari prèvia identificació i validació de les dades.
Resumo:
The enzyme dihydroorotate dehydrogenase (DHODH) has been suggested as a promising target for the design of trypanocidal agents. We report here the discovery of novel inhibitors of Trypanosoma cruzi DHODH identified by a combination of virtual screening and ITC methods. Monitoring of the enzymatic reaction in the presence of selected ligands together with structural information obtained from X-ray crystallography analysis have allowed the identification and validation of a novel site of interaction (S2 site). This has provided important structural insights for the rational design of T cruzi and Leishmania major DHODH inhibitors. The most potent compound (1) in the investigated series inhibits TcDHODH enzyme with K(i)(app) value of 19.28 mu M and possesses a ligand efficiency of 0.54 kcal mol(-1) per non-H atom. The compounds described in this work are promising hits for further development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
This article aims to reflect on the contribution of oral history in studies involving memory and identity of ethnic groups. Problematic issues here are part of the result of two recently completed researches, which consisted of reconstructing the memory of Afro-Brazilians from the methodology of oral history. These surveys were intended to transpose, into written language, memories transmitted by oral tradition and which was confined to family circles. The first was to investigate the process of identification and transmission of knowledge from a black cultural practice in the countryside of São Paulo (Piracicaba, Capivari, and Tietê), the Batuque of Umbigada, and the second to reconstruct the stories and culture of Afro-Brazilians in the city of Itu, São Paulo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
Background Chronic obstructive pulmonary disease (COPD) is increasingly considered a heterogeneous condition. It was hypothesised that COPD, as currently defined, includes different clinically relevant subtypes. Methods To identify and validate COPD subtypes, 342 subjects hospitalised for the first time because of a COPD exacerbation were recruited. Three months after discharge, when clinically stable, symptoms and quality of life, lung function, exercise capacity, nutritional status, biomarkers of systemic and bronchial inflammation, sputum microbiology, CT of the thorax and echocardiography were assessed. COPD groups were identified by partitioning cluster analysis and validated prospectively against cause-specific hospitalisations and all-cause mortality during a 4 year follow-up. Results Three COPD groups were identified: group 1 (n ¼ 126, 67 years) was characterised by severe airflow limitation (postbronchodilator forced expiratory volume in 1 s (FEV 1 ) 38% predicted) and worse performance in most of the respiratory domains of the disease; group 2 (n ¼ 125, 69 years) showed milder airflow limitation (FEV 1 63% predicted); and group 3 (n ¼ 91, 67 years) combined a similarly milder airflow limitation (FEV 1 58% predicted) with a high proportion of obesity, cardiovascular disorders, iabetes and systemic inflammation. During follow-up, group 1 had more frequent hospitalisations due to COPD (HR 3.28, p < 0.001) and higher all-cause mortality (HR 2.36, p ¼ 0.018) than the other two groups, whereas group 3 had more admissions due to cardiovascular disease (HR 2.87, p ¼ 0.014). Conclusions In patients with COPD recruited at their first hospitalisation, three different COPD subtypes were identified and prospectively validated:"severe respiratory COPD","moderate respiratory COPD", and"systemic COPD'
Resumo:
Background Chronic obstructive pulmonary disease (COPD) is increasingly considered a heterogeneous condition. It was hypothesised that COPD, as currently defined, includes different clinically relevant subtypes. Methods To identify and validate COPD subtypes, 342 subjects hospitalised for the first time because of a COPD exacerbation were recruited. Three months after discharge, when clinically stable, symptoms and quality of life, lung function, exercise capacity, nutritional status, biomarkers of systemic and bronchial inflammation, sputum microbiology, CT of the thorax and echocardiography were assessed. COPD groups were identified by partitioning cluster analysis and validated prospectively against cause-specific hospitalisations and all-cause mortality during a 4 year follow-up. Results Three COPD groups were identified: group 1 (n ¼ 126, 67 years) was characterised by severe airflow limitation (postbronchodilator forced expiratory volume in 1 s (FEV 1 ) 38% predicted) and worse performance in most of the respiratory domains of the disease; group 2 (n ¼ 125, 69 years) showed milder airflow limitation (FEV 1 63% predicted); and group 3 (n ¼ 91, 67 years) combined a similarly milder airflow limitation (FEV 1 58% predicted) with a high proportion of obesity, cardiovascular disorders, iabetes and systemic inflammation. During follow-up, group 1 had more frequent hospitalisations due to COPD (HR 3.28, p < 0.001) and higher all-cause mortality (HR 2.36, p ¼ 0.018) than the other two groups, whereas group 3 had more admissions due to cardiovascular disease (HR 2.87, p ¼ 0.014). Conclusions In patients with COPD recruited at their first hospitalisation, three different COPD subtypes were identified and prospectively validated:"severe respiratory COPD","moderate respiratory COPD", and"systemic COPD'
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.