831 resultados para human activity recognition
Resumo:
The in vivo effectiveness of ribozymes strongly depends on the correct choice of the vector molecule. High levels of expression, stability, active conformation, and correct cellular localization are the most important features for a ribozyme vector. We have exploited the utilization of the U1 small nuclear RNA (snRNA) as a vector for specifically targeting a ribozyme into the nucleus. The Rev pre-mRNA of human immunodeficiency virus type 1 was chosen as target for testing the activity of the Ul-ribozyme. The catalytic core of the hammerhead motif, plus the recognition sequences, substituted the stem-loop III of the U1 snRNA. The resulting construct displays efficient cleavage activity in vitro. In addition, in the in vivo system of Xenopus laevis oocytes, the Ul-chimeric ribozyme accumulates in large amounts in the nucleus and produces a considerable reduction of Rev pre-mRNA levels. The Rev-specific ribozyme was also inserted in a derivative of the Ul snRNA mutated in the region of pairing with the 5' splice site, such as to match it with the suboptimal splice junction of the Rev precursor. This construct shows more efficient reduction of Rev pre-mRNA in vivo than the wild-type U1 vector.
Resumo:
The composite transcription factor activating protein 1 (AP-1) integrates various mitogenic signals in a large number of cell types, and is therefore a major regulator of cell proliferation. In the normal human endometrium, proliferation and differentiation alternate in a cyclic fashion, with progesterone being largely implicated in the latter process. However, the effects of progesterone and the progesterone receptor (hPR) on AP-1 activity in the human endometrium are not known. To address this issue, HEC-1-B endometrial adenocarcinoma cells, which are devoid of hPR, were transfected with luciferase reporter constructs driven by two different AP-1-dependent promoters. Unexpectedly, cotransfection of hPR caused a marked induction of luciferase activity in the absence of ligand on both promoters. The magnitude of this induction was similar to that observed in response to the phorbol ester TPA. Addition of ligand reversed the stimulating effect of the unliganded hPR on AM activity in these cells. These effects were specific for hPR, and were not observed with either human estrogen receptor or human glucocorticoid receptor. Furthermore, they strictly depended on the presence of AP-1-responsive sequences within target promoters. Finally, the described effects of hPR on AP-1 activity were shown to be cell-type specific, because they could not be demonstrated in SKUT-1-B, JEG-3, and COS-7 cells. To our knowledge this is the first report of an unliganded steroid receptor stimulating AP-1 activity. This effect and its reversal in the presence of ligand suggest a novel mechanism, through which hPR can act as a key regulator of both proliferation and differentiation in the human endometrium.
Resumo:
The ribonucleolytic activity of angiogenin (Ang) is essential to Ang's capacity to induce blood vessel formation. Previous x-ray diffraction and mutagenesis results have shown that the active site of the human protein is obstructed by Gln-117 and imply that the C-terminal region of Ang must undergo a conformational rearrangement to allow substrate binding and catalysis. As a first step toward structural characterization of this conformational change, additional site-directed mutagenesis and kinetic analysis have been used to examine the intramolecular interactions that stabilize the inactive conformation of the protein. Two residues of this region, Ile-119 and Phe-120, are found to make hydrophobic interactions with the remainder of the protein and thereby help to keep Gln-117 in its obstructive position. Furthermore, the suppression of activity by the intramolecular interactions of Ile-119 and Phe-120 is counterbalanced by an effect of the adjacent residues, Arg-121, Arg-122, and Pro-123 which do not appear to form contacts with the rest of the protein structure. They contribute to enzymatic activity, probably by constituting a peripheral subsite for binding polymeric substrates. The results reveal the nature of the conformational change in human Ang and assign a key role to the C-terminal region both in this process and, presumably, in the regulation of human Ang function.
Resumo:
Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.
Resumo:
Several disulfide benzamides have been shown to possess wide-spectrum antiretroviral activity in cell culture at low micromolar to submicromolar concentrations, inhibiting human immunodeficiency virus (HIV) type 1 (HIV-1) clinical and drug-resistant strains along with HIV-2 and simian immunodeficiency virus [Rice, W. G., Supko, J. G., Malspeis, L., Buckheit, R. W., Jr., Clanton, D., Bu, M., Graham, L., Schaeffer, C. A., Turpin, J. A., Domagala, J., Gogliotti, R., Bader, J. P., Halliday, S. M., Coren, L., Sowder, R. C., II, Arthur, L. O. & Henderson, L. E. (1995) Science 270, 1194-1197]. Rice and coworkers have proposed that the compounds act by "attacking" the two zinc fingers of HIV nucleocapsid protein. Shown here is evidence that low micromolar concentrations of the anti-HIV disulfide benzamides eject zinc from HIV nucleocapsid protein (NCp7) in vitro, as monitored by the zinc-specific fluorescent probe N-(6-methoxy-8-quinoyl)-p-toluenesulfonamide (TSQ). Structurally similar disulfide benzamides that do not inhibit HIV-1 in culture do not eject zinc, nor do analogs of the antiviral compounds with the disulfide replaced with a methylene sulfide. The kinetics of NCp7 zinc ejection by disulfide benzamides were found to be nonsaturable and biexponential, with the rate of ejection from the C-terminal zinc finger 7-fold faster than that from the N-terminal. The antiviral compounds were found to inhibit the zinc-dependent binding of NCp7 to HIV psi RNA, as studied by gel-shift assays, and the data correlated well with the zinc ejection data. Anti-HIV disulfide benzamides specifically eject NCp7 zinc and abolish the protein's ability to bind psi RNA in vitro, providing evidence for a possible antiretroviral mechanism of action of these compounds. Congeners of this class are under advanced preclinical evaluation as a potential chemotherapy for acquired immunodeficiency syndrome.
Resumo:
We report the isolation and characterization of a new selenoprotein from a human lung adenocarcinoma cell line, NCI-H441. Cells were grown in RPMI-1640 medium containing 10% (vol/vol) fetal bovine serum and 0.1 microM [75Se]selenite. A 75Se-labeled protein was isolated from sonic extracts of the cells by chromatography on DE-23, phenyl-Sepharose, heparin-agarose, and butyl-Sepharose. The protein, a homodimer of 57-kDa subunits, was shown to contain selenium in the form of selenocysteine; hydrolysis of the protein alkylated with either iodoacetate or 3-bromopropionate yielded Se-carboxymethyl-selenocysteine or Se-carboxyethyl-selenocysteine, respectively. The selenoprotein showed two isoelectric points at pH 5.2 and pH 5.3. It was distinguished from selenoprotein P by N-glycosidase assay and by the periodate-dansylhydrazine test, which indicated no detectable amounts of glycosyl groups on the protein. The selenoprotein contains FAD as a prosthetic group and catalyzes NADPH-dependent reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and reduction of insulin in the presence of thioredoxin (Trx). The specific activity was determined to be 31 units/mg by DTNB assay. Apparent Km values for DTNB, Escherichia coli Trx, and rat Trx were 116, 34, and 3.7 microM, respectively. DTNB reduction was inhibited by 0.2 mM arsenite. Although the subunit composition and catalytic properties are similar to those of mammalian thioredoxin reductase (TR), the human lung selenoprotein failed to react with anti-rat liver TR polyclonal antibody in immunoblot assays. The selenocysteine-containing TR from the adenocarcinoma cells may be a variant form distinct from rat liver TR.
Resumo:
A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.
Resumo:
Interferon tau (IFN tau), originally identified as a pregnancy recognition hormone, is a type I interferon that is related to the various IFN alpha species (IFN alpha s). Ovine IFN tau has antiviral activity similar to that of human IFN alpha A on the Madin-Darby bovine kidney (MDBK) cell line and is equally effective in inhibiting cell proliferation. In this study, IFN tau was found to differ from IFN alpha A in that is was > 30-fold less toxic to MDBK cells at high concentrations. Excess IFN tau did not block the cytotoxicity of IFN alpha A on MDBK cells, suggesting that these two type I IFNs recognize the type I IFN receptor differently on these cells. In direct binding studies, 125I-IFN tau had a Kd of 3.90 x 10(-10) M for receptor on MDBK cells, whereas that of 125I-IFN alpha A was 4.45 x 10(-11) M. Consistent with the higher binding affinity, IFN alpha A was severalfold more effective than IFN tau in competitive binding against 125I-IFN tau to receptor on MDBK cells. Paradoxically, the two IFNs had similar specific antiviral activities on MDBK cells. However, maximal IFN antiviral activity required only fractional occupancy of receptors, whereas toxicity was associated with maximal receptor occupancy. Hence, IFN alpha A, with the higher binding affinity, was more toxic than IFN tau. The IFNs were similar in inducing the specific phosphorylation of the type I receptor-associated tyrosine kinase Tyk2, and the transcription factors Stat1 alpha and Stat2, suggesting that phosphorylation of these signal transduction proteins is not involved in the cellular toxicity associated with type I IFNs. Experiments using synthetic peptides suggest that differences in the interaction at the N terminal of IFN tau and IFN alpha with the type I receptor complex contribute significantly to differences in high-affinity equilibrium binding of these molecules. It is postulated that such a differential recognition of the receptor is responsible for the similar antiviral but different cytotoxic effects of these IFNs. Moreover, these data imply that receptors are "spare'' with respect to certain biological properties, and we speculate that IFNs may induce a concentration-dependent selective association of receptor subunits.
Resumo:
Cassette mutagenesis was used to identify side chains in human interleukin 5 (hIL-5) that mediate binding to hIL-5 receptor alpha chain (hIL-5R alpha). A series of single alanine substitutions was introduced into a stretch of residues in the C-terminal region, including helix D, which previously had been implicated in receptor alpha chain recognition and which is aligned on the IL-5 surface so as to allow the topography of receptor binding residues to be examined. hIL-5 and single site mutants were expressed in COS cells, their interactions with hIL-5R alpha were measured by a sandwich surface plasmon resonance biosensor method, and their biological activities were measured by an IL-5-dependent cell proliferation assay. A pattern of mutagenesis effects was observed, with greatest impact near the interface between the two four-helix bundles of IL-5, in particular at residues Glu-110 and Trp-111, and least at the distal ends of the D helices. This pattern suggests the possibility that residues near the interface of the two four-helix bundles in hIL-5 comprise a central patch or hot spot, which constitutes an energetically important alpha chain recognition site. This hypothesis suggests a structural explanation for the 1:1 stoichiometry observed for the complex of hIL-5 with hIL-5R alpha.
Resumo:
Microsomal cytochrome P450c17 catalyzes both steroid 17 alpha-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17 alpha-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome.
Resumo:
Trypanosomes are protozoan parasites of medical and veterinary importance. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense infect humans, causing African sleeping sickness. However, Trypanosoma brucei brucei can only infect animals, causing the disease Nagana in cattle. Man is protected from this subspecies of trypanosomes by a toxic subtype of high density lipoproteins (HDLs) called the trypanosome lytic factor (TLF). The toxic molecule in TLF is believed to be the haptoglobin-related protein that when bound to hemoglobin kills the trypanosome via oxidative damage initiated by its peroxidase activity. The amount of lytic activity in serum varies widely between different individuals with up to a 60-fold difference in activity. In addition, an increase in the total amount of lytic activity occurs during the purification of TLF, suggesting that an inhibitor of TLF (ITLF) exists in human serum. We now show that the individual variation in trypanosome lytic activity in serum correlates to variations in the amount of ITLF. Immunoblots of ITLF probed with antiserum against haptoglobin recognize a 120-kDa protein, indicating that haptoglobin is present in partially purified ITLF. Haptoglobin involvement is further shown in that it inhibits TLF in a manner similar to ITLF. Using an anti-haptoglobin column to remove haptoglobin from ITLF, we show that the loss of haptoglobin coincides with the loss of inhibitor activity. Addition of purified haptoglobin restores inhibitor activity. This indicates that haptoglobin is the molecule responsible for inhibition and therefore causing the individual variation in serum lytic activity.
Resumo:
The 5' flanking region of the human alpha-globin gene is highly G + C rich and contains multiple copies of the consensus sequence for the Sp1 binding site. We investigated the role of this G + C-rich region in augmenting alpha-globin promoter activity in the presence of the far-upstream alpha-globin enhancer, HS-40. We show that in transiently transfected erythroid cells, deletion of the alpha-globin G + C-rich 5' flanking region has no effect on alpha-globin promoter activity. However, upon stable integration into chromatin, deletion of this region causes a nearly 90% decrease in promoter activity compared with expression from an alpha-globin promoter retaining this region. These results suggest that the alpha-globin G + C-rich 5' flanking region augments alpha-globin promoter activity in a chromatin-dependent manner. We further show that this G + C-rich region is required for the activation of alpha-globin gene expression during erythroid differentiation. Finally, we show by both footprint analysis and functional assays that the ability of the G + C-rich region to increase alpha-globin promoter activity from a stably integrated alpha-globin gene is mediated by its multiple binding sites for the transcription factor Sp1.
Resumo:
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Resumo:
PR-39 is a porcine 39-aa peptide antibiotic composed of 49% proline and 24% arginine, with an activity against Gram-negative bacteria comparable to that of tetracycline. In Escherichia coli, it inhibits DNA and protein synthesis. PR-39 was originally isolated from pig small intestine, but subsequent cDNA cloning showed that the gene is expressed in the bone marrow. The open reading frame of the clone showed that PR-39 is made as 173-aa precursor whose proregion belongs to the cathelin family. The PR39 gene, which is rather compact and spans only 1784 bp has now been sequenced. The coding information is split into four exons. The first exon contains the signal sequence of 29 residues and the first 37 residues of the cathelin propart. Exons 2 and 3 contain only cathelin information, while exon 4 codes for the four C-terminal cathelin residues and the mature PR-39 peptide extended by three residues. The sequenced upstream region (1183 bp) contains four potential recognition sites for NF-IL6 and three for APRF, transcription factors known to regulate genes for both cytokines and acute phase response factors. Genomic hybridizations revealed a fairly high level of restriction fragment length polymorphism and indicated that there are at least two copies of the PR39 gene in the pig genome. PR39 was mapped to pig chromosome 13 by linkage and in situ hybridization mapping. The gene for the human peptide antibiotic FALL-39 (also a member of the cathelin family) was mapped to human chromosome 3, which is homologous to pig chromosome 13.
Resumo:
Benzene is a ubitiquous human environment mental carcinogen. One of the major metabolites is hydroquinone, which is oxidized in vivo to give p-benzoquinone (p-BQ). Both metabolites are toxic to human cells. p-BQ reacts with DNA to form benzetheno adducts with deoxycytidine, deoxyadenosine, and deoxyguanosine. In this study we have synthesized the exocyclic compounds 3-hydroxy-3-N4-benzetheno-2'-deoxycytidine (p-BQ-dCyd) and 9-hydroxy-1,N6-benzetheno-2'-deoxyadenosine (p-BQ-dAdo), respectively, by reacting deoxycytidine and deoxyadenosine with p-BQ. These were converted to the phosphoamidites, which were then used to prepare site-specific oligonucleotides with either the p-BQ-dCyd or p-BQ-dAdo adduct (pbqC or pbqA in sequences) at two different defined positions. These oligonucleotides were efficiently nicked 5' to the adduct by partially purified HeLa cell extracts--the pbqC-containing oligomer more rapidly than the pbqA-containing oligomer. In contrast to the enzyme binding to derivatives produced by the vinyl chloride metabolite chloroacetaldehyde, the oligonucleotides up to 60-mer containing p-BQ adducts did not bind measurably to the same enzyme preparation in a gel retardation assay. Furthermore, there was no competition for the binding observed between oligonucleotides containing 1,N6-etheno A deoxyadenosine (1,N6-etheno-dAdo; epsilon A in sequences) and these oligomers containing either of the p-BQ adducts, even at 120-fold excess. When highly purified fast protein liquid chromatography (FPLC) enzyme fractions were obtained, there appeared to be two closely eluting nicking activities. One of these enzymes bound and cleaved the epsilon A-containing deoxyoligonucleotide. The other enzyme cleaved the pbqA- and pbqC-containing deoxyoligonucleotides. One additional unexpected fact was that bulk p-BQ-treated salmon sperm DNA did compete effectively with the epsilon A-containing oligonucleotide for protein binding. This raises the possibility that such DNA contains other, as-yet-uncharacterized adducts that are recognized by the same enzyme that recognizes the etheno adducts. In summary, we describe a previously undescribed human DNA repair activity, possibly a glycosylase, that excises from DNA pbqC and pbqA, exocyclic adducts resulting from reaction of deoxycytidine and deoxyadenosine with the benzene metabolite, p-BQ. This glycosylase activity is not identical to the one previously reported from this laboratory as excising the four etheno bases from DNA.