934 resultados para homoclinic chaos
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Wisdom's method is applied to 5 : 2 and 7 : 3 resonances. Comparisons with Yoshikawa's nontruncated model are performed: for moderate values of eccentricity, agreement is good, especially for the 5 : 2 resonance. A clear difference between the 5 : 2 and the 7 : 3 resonances is observed: the former (like the 3 : 1 resonance) can suffer significant variations of eccentricity, even starting from very small values close to 0, while the latter seems to undergo such variations but the minimum eccentricity cannot be less than a value near 0.1. In the 7 : 3 resonance, some chaotic motion trapped in a region of very small eccentricity is possible. This is in contrast with the 5 : 2 commensurability, since chaos in this case seems to be always related to significant variations of eccentricity. Recent calculations performed by Šidlichovskÿ using mapping techniques show agreement with the results presented here. © 1992.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion
Resumo:
The expressive possibilities within the field of surface design come up with increasingly larger with the emergence of technologies that allow the construction of forms and structures of high complexity such as three-dimensional printing. Establishing a relationship between design and complex systems, this work seeks to address the significant interrelationship of new paradigms of science, designed from concepts such as chaos, complexity and self-organization along with the cyber and parametric design, assuming thus the consequent impact of these in the creation and construction of process surfaces. Starting from the investigation of the applicability of the aforementioned conceptual bases, will be exemplified prospects of surface, produced in the first instance through computer interfaces, assigning the emergence of new creative processes and technology. Furthermore, elucidating biomimetics and its importance in the design of the design as a means of inspiration in complex systems of nature.
Resumo:
This Special Issue presents a selection of papers initially presented at the 11th International Conference on Vibration Problems (ICOVP-2013), held from 9 to 12 September 2013 in Lisbon, Portugal. The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: “Vibration Problems in Vertical Transportation Systems”, “Nonlinear Dynamics, Chaos and Control of Elastic Structures” and “New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control”.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
The statistical properties of trajectories of eigenvalues of Gaussian complex matrices whose Hermitian condition is progressively broken are investigated. It is shown how the ordering on the real axis of the real eigenvalues is reflected in the structure of the trajectories and also in the final distribution of the eigenvalues in the complex plane.
Resumo:
The dynamics of a driven stadium-like billiard is considered using the formalism of discrete mappings. The model presents a resonant velocity that depends on the rotation number around fixed points and external boundary perturbation which plays an important separation rule in the model. We show that particles exhibiting Fermi acceleration (initial velocity is above the resonant one) are scaling invariant with respect to the initial velocity and external perturbation. However, initial velocities below the resonant one lead the particles to decelerate therefore unlimited energy growth is not observed. This phenomenon may be interpreted as a specific Maxwell's Demon which may separate fast and slow billiard particles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Turbulence is one of the key problems of classical physics, and it has been the object of intense research in the last decades in a large spectrum of problems involving fluids, plasmas, and waves. In order to review some advances in theoretical and experimental investigations on turbulence a mini-symposium on this subject was organized in the Dynamics Days South America 2010 Conference. The main goal of this mini-symposium was to present recent developments in both fundamental aspects and dynamical analysis of turbulence in nonlinear waves and fusion plasmas. In this paper we present a summary of the works presented at this mini-symposium. Among the questions to be addressed were the onset and control of turbulence and spatio-temporal chaos. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.