903 resultados para high power laser system
Resumo:
A new diketopyrrolopyrrole (DPP)-containing donor-acceptor polymer, poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene) (PDBF-co-TT), is synthesized and studied as a semiconductor in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). High hole mobility of up to 0.53 cm 2 V -1 s -1 in bottom-gate, top-contact OTFT devices is achieved owing to the ordered polymer chain packing and favoured chain orientation, strong intermolecular interactions, as well as uniform film morphology of PDBF-co-TT. The optimum band gap of 1.39 eV and high hole mobility make this polymer a promising donor semiconductor for the solar cell application. When paired with a fullerene acceptor, PC 71BM, the resulting OPV devices show a high power conversion efficiency of up to 4.38% under simulated standard AM1.5 solar illumination.
Resumo:
This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.
Resumo:
Traceability system in the food supply chain is becoming more necessary. RFID and EPCglobal Network Standards are emerging technologies that bring new opportunities to develop the high performance traceability system. This research proposes the analysis, design, and development of the RFID and EPCglobal Network Standards based traceability system that adheres to the requirements of global food traceability in terms of completeness of traceability information. The additional components, including lot management system and electronic transaction management system, encourage the traditional system in order to fulfill the missing information. The proposed system was developed and applied in a rice supply chain. Results from experimentation showed that the additional components can significantly improve the completeness of traceability information. The collaboration between EPCglobal Network Standards and electronic transaction management system can improve the performances in RFID operations.
A LIN inspired optical bus for signal isolation in multilevel or modular power electronic converters
Resumo:
Proposed in this paper is a low-cost, half-duplex optical communication bus for control signal isolation in modular or multilevel power electronic converters. The concept is inspired by the Local Interconnect Network (LIN) serial network protocol as used in the automotive industry. The proposed communications bus utilises readily available optical transceivers and is suitable for use with low-cost microcontrollers for distributed control of multilevel converters. As a signal isolation concept, the proposed optical bus enables very high cell count modular multilevel cascaded converters (MMCCs) for high-bandwidth, high-voltage and high-power applications. Prototype hardware is developed and the optical bus concept is validated experimentally in a 33-level MMCC converter operating at 120 Vrms and 60 Hz.
Resumo:
Increasing worldwide terrorist attacks involving explosives presents a growing need for a rapid and ranged explosive detection method that can safely be deployed in the field. Stand-off Raman spectroscopy shows great promise; however, the radiant exposures of lasers required for adequate signal generation are often much greater than what is safe for the eye or the skin, restricting use of the technique to un-populated areas. Here, by determining the safe exposure levels for lasers typically used in Raman spectroscopy, optimal parameter values are identified, which produce the largest possible detection range using power densities that do not exceed the eye-safe limit. It is shown that safe ultraviolet pulse energies can be more than three orders of magnitude greater than equivalent safe visible pulse energies. Coupling this to the 16-fold increase in Raman signal obtained in the ultraviolet at 266 nm over that at 532 nm results in a 131 times larger detection range for the eye-safe 266-nm system over an equivalent eye-safe 532-nm laser system. For the Raman system described here, this translates to a maximum range of 42 m for detecting Teflon with a 266-nm laser emitting a 100-mm diameter beam of 23.5-mJ nanosecond pulses.
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Resumo:
This paper describes the use of high-power thyristors in conjunction with a low-voltage supply for generating pulsed magnetic fields. A modular bank of electrolytic capacitors is charged through a programmable solid-state power supply and then rapidly discharged through a bank of thyristors into a magnetizing coil. The modular construction of capacitor banks enables the discrete control of pulse energy and time. Peak fields up to 15 telsa (150 KOe) and a half period of about 200 microseconds are generated through the discharges. Still higher fields are produced by discharging into a precooled coil ( 77°K). Measurement method for a pulsed field is described.
Resumo:
Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.
Resumo:
The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.
Resumo:
We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.
Resumo:
This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets).
Resumo:
Multilevel inverters are an attractive solution in the medium-voltage and high-power applications. However in the low-power range also it can be a better solution compared to two-level inverters, if MOSFETs are used as devices switching in the order of 100 kHz. The effect of clamping diodes in the diode-clamped multilevel inverters play an important role in determining its efficiency. Power loss introduced by the reverse recovery of MOSFET body diode prohibits the use of MOSFET in hard-switched inverter legs. A technique of avoiding reverse recovery loss of MOSFET body diode in a three-level neutral point clamped inverter is suggested. The use of multilevel inverters topology enables operation at high switching frequency without sacrificing efficiency. High switching frequency of operation reduces the output filter requirement, which in turn helps in reducing the size of the inverter. This study elaborates the trade-off analysis to quantify the suitability of multilevel inverters in the low-power applications. Advantages of using a MOSFET-based three-level diode-clamped inverter for a PM motor drive and UPS systems are discussed.
Resumo:
A variety of solutions are available today from industry for high power variable speed AC motor drive applications, starting from a power rating of a few 100 kW to several 10’s of Megawatts. These drives can be classified on the basis of the electrical motor, the power converter and the control technique. The main drive types are reviewed.The salient features of each type of drive are pointed out along with their industrial applications.Following this, some research at IISc which has applications in high power drives is described briefly.
Resumo:
This paper reports, the Laser Induced Breakdown Spectroscopy (LIBS) studies and structure elucidation of compounds isolated from the fruit extract of Moringa oleifera and also deals with their possible effects on some bacterial strains viz. Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa. The extract was found to be active against all four microorganisms used. Extent of inhibitory effect of extract was assessed at different concentrations of 25, 50, 75 mg/ml by measuring diameter of inhibition zone (DIZ). Our results clearly showed that the 75 mg/ml concentration of the extract had 14, 12 and 18 mm of the DIZ against Staphylococcus aureus, Klebsiella pneumonia and Pseudomonas aeruginosa and 14 mm with 50 mg/ml concentration against Escherichia coli. The results were compared with the standard antibiotic `ampicillin' of 1 mg/ml concentration. LIBS was recorded with high power pulsed laser beam from Nd: YAG Laser (Continuum Surelite III-10), focused on the surface of the material, which was in liquid form, to generate plasma on the surface of the sample. LIBS data clearly demonstrate the presence of trace elements, magnesium and iron, in high concentration in the extract. Whereas, from the phytochemical profile reveals the presence of two new compounds, S-ethyl-N-{4-[(alpha-L-rhamnosyloxy) benzyl]} thiocarbamate and 2-acetoxy {4-[(2',3',4'-tri-O-acetyl-alpha-L-rhamnosyloxy) benzyl]} acetonitrile as the major constituents. This study is the first report on synergetic effect of the phytoconstituents and certain set of elements present in their defined role in bacterial management against different bacterial strains.
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.