920 resultados para growth parameters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The jumbo flying squid, Dosidicus gigas, support an important squid fishery off the Exclusive Economic Zone of Chilean waters. However, we only have limited information about their biology. In this study, age, growth and population structure of D. gigas were studied using statoliths from 333 specimens (386 females and 147 males) randomly sampled in the Chinese squid jigging surveys from 2007 to 2008 off the Exclusive Economic Zone of Chile. Mantle lengths (MLs) of the sample ranged from 206 to 702 mm, and their ages were estimated from 150 to 307 days for females and from 127 to 302 days for males. At least two spawning groups were identified, the main spawning peak tended to occur between August and November (austral spring group), and the secondary peak appeared during March to June (austral autumn group). The ML-age relationship was best modelled by a linear function for the austral spring group and a power function for the austral autumn group, and the body weight (BW)-age relationship was best described by an exponential function for both the groups. Instantaneous relative growth rates and absolute growth rates for ML and BW did not differ significantly between the two groups. The growth rate of D. gigas tended to be high at young stages, and then decreased after the sub-adult stage (>180 days old). This study suggests large spatial and temporal variability in key life history parameters of D. gigas, calling for the collection of more data with fine spatial and temporal scales to further improve our understanding of the fishery biology of D. gigas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this paper is to revisit the influential work of Mauro [1995] focusing on the strength of his results under weak identification. He finds a negative impact of corruption on investment and economic growth that appears to be robust to endogeneity when using two-stage least squares (2SLS). Since the inception of Mauro [1995], much literature has focused on 2SLS methods revealing the dangers of estimation and thus inference under weak identification. We reproduce the original results of Mauro [1995] with a high level of confidence and show that the instrument used in the original work is in fact 'weak' as defined by Staiger and Stock [1997]. Thus we update the analysis using a test statistic robust to weak instruments. Our results suggest that under Mauro's original model there is a high probability that the parameters of interest are locally almost unidentified in multivariate specifications. To address this problem, we also investigate other instruments commonly used in the corruption literature and obtain similar results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15 °C, a significant but slow growth at 1 °C, and cell death at 25 °C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10 °C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19 per day, and total YTX concentration ranged from 0.3 to 15.0 pg YTX/cell and from 0.5 to 31.0 pg YTX/cell at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population dynamics of abundance and biomass were studied and specific production of population of ctenophore Mnemiopsis leidyi was estimated in the Sevastopol Bay from January 1995 to March 1996. The ctenophores achieved maximum abundance and biomass in July during period of intensive reproduction. Young specimens (<5 mm) contributed during that period as much as 50-87% to total abundance of population. Annually averaged daily specific growth rate was 0.039. Growth, food consumption, and rate of filtration were measured in a laboratory under two concentrations of food (Acartia clausi and Moina micrura: 60 and 100 specimens per liter, 0.35 and 0.60 mg wet weight/l). Both concentrations sustained growth of animals with dry weight less than 20 mg. However these concentrations were insufficient to sustain growth of larger ctenophores. Specific growth rate of the ctenophores with dry weight <20 mg under favorable food conditions was 0.20-0.30 l/day. Specific growth rate of the ctenophores in the Sevastopol Bay never exceeded 0.093 l/day, mean biomass of fodder zooplankton in the bay being 90 mg/m**3 in terms of wet weight. Hence a conclusion was made that population of M. leidyi in the bay was limited by lack of food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feeding patterns of mass herbivorous copepods in upwelling areas are investigated. Daily rations and aspects of their formation are examined in Calanoides carinatus (Benguela upwelling), Calanus pacificus (off the California coast), and Calanus australis (Peru upwelling). Rations were calculated based on gut plant pigment contents obtained at daily stations using laser spectrofluorometry, experimental data on the rate of gut evacuation and data on the carbon/chlorophyll ratio in phytoplankton and particulate matter at the respective stations. When phytoplankton was abundant, diel feeding rhythms were not pronounced and gut pigment level was high during the entire 24-h period. When phytoplankton biomass was low, distinct feeding rhythms were pronounced with a nocturnal maximum. During active upwelling intensive feeding on phytoplankton supports energy (respiration) and plastic (growth, development, reproduction, accumulation of reserves) metabolism of copepods. When upwelling was inactive, the surface part of the population feeds less actively and is able only partially to cover its energy expenditures. The actively growing and reproducing populations of C. pacificus and C. carinatus may consume close to 20% of primary production, whereas the inactive population of C. australis consumed only 0.2% of primary production when upwelling weakened.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41° - 42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 µm/day compared to 2.76 µm/day. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From July 4 to 18,1995 surface chlorophyll a concentrations (C_cs) and integral primary production (C_ps) were studied in the northeastern part of the Norwegian Sea (73°42'N; 13°16'E), over a test area where an accident of the nuclear submarine Komsomolets had taken place. It was found that during this interval C_cs decreased by factor of about 3.3 (from 0.78 to 0.24 mg/m**3); average chlorophyll concentration within the photo-synthetic layer (C_cl) decreased by factor of about 3.5 (from 0.97 to 0.28 mg/m**3). The value of C_ps in the water column varied slightly (from 445 to 539 mg C/m**2 per day), since decrease in C_cl was compensated both by 1.5-fold growth of the photosynthetic layer thickness (from 40 to 60 m) and by 2.1-fold increase in its average assimilation number (from 0.58 to 1.20 mg C/mg chl a per hour). Monthly averages of C_ps were obtained from published data on seasonal C_cs changes and on the level of incident solar irradiation. They were found to be less than 100 mg C/m**2 per day in March and October and 100-500 mg C/m**2 per day in April-June. Annual primary production calculated from above values was equal to 105 g C/m**2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance heterotrophic dinoflagellates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of heterotrophic dinoflagellates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known dinoflagellate feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C dinoflagellate-1 h-1, µm3 dinoflagellate-1 h-1 and prey cell dinoflagellate-1 h-1; clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large fraction of the carbon dioxide added to the atmosphere by human activity enters the sea, causing ocean acidification. We show that otoliths (aragonite ear bones) of young fish grown under high CO2 (low pH) conditions are larger than normal, contrary to expectation. We hypothesize that CO2 moves freely through the epithelium around the otoliths in young fish, accelerating otolith growth while the local pH is controlled. This is the converse of the effect commonly reported for structural biominerals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters in the photosynthesis-irradiance (P-E) relationship of phytoplankton were measured at weekly to bi-weekly intervals for 20 yr at 6 stations on the Rhode River, Maryland (USA). Variability in the light-saturated photosynthetic rate, PBmax, was partitioned into interannual, seasonal, and spatial components. The seasonal component of the variance was greatest, followed by interannual and then spatial. Physiological models of PBmax based on balanced growth or photoacclimation predicted the overall mean and most of the range, but not individual observations, and failed to capture important features of the seasonal and interannual variability. PBmax correlated most strongly with temperature and the concentration of dissolved inorganic carbon (IC), with lesser correlations with chlorophyll a, diffuse attenuation coefficient, and a principal component of the species composition. In statistical models, temperature and IC correlated best with the seasonal pattern, but temperature peaked in late July, out of phase with PBmax, which peaked in September, coincident with the maximum in monthly averaged IC concentration. In contrast with the seasonal pattern, temperature did not contribute to interannual variation, which instead was governed by IC and the additional lesser correlates. Spatial variation was relatively weak and uncorrelated with ancillary measurements. The results demonstrate that both the overall distribution of PBmax and its relationship with environmental correlates may vary from year to year. Coefficients in empirical statistical models became stable after including 7 to 10 yr of data. The main correlates of PBmax are amenable to automated monitoring, so that future estimates of primary production might be made without labor-intensive incubations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work examines the relationship between pH-induced changes in growth and stable isotopic composition of coccolith calcite in two coccolithophore species with a geological perspective. These cells (Gephyrocapsa oceanica and Coccolithus pelagicus) with differing physiologies and vital effects possess a growth optimum corresponding to average pH of surface seawater in the geological period during their first known occurrence. Diminished growth rates outside of their optimum pH range are explained by the challenge of proton translocation into the extracellular environment at low pH, and enhanced aqueous CO2 limitation at high pH. These diminished growth rates correspond to a lower degree of oxygen isotopic disequilibrium in G. oceanica. In contrast, the slower growing and ancient species C. pelagicus, which typically precipitates near-equilibrium calcite, does not show any modulation of oxygen isotope signals with changing pH. In CO2-utilizing unicellular algae, carbon and oxygen isotope compositions are best explained by the degree of utilization of the internal dissolved inorganic carbon (DIC) pool and the dynamics of isotopic re-equilibration inside the cell. Thus, the "carbonate ion effect" may not apply to coccolithophores. This difference with foraminifera can be traced to different modes of DIC incorporation into these two distinct biomineralizing organisms. From a geological perspective, these findings have implications for refining the use of oxygen isotopes to infer more reliable sea surface temperatures (SSTs) from fossil carbonates, and contribute to a better understanding of how climate-relevant parameters are recorded in the sedimentary archive.