873 resultados para glutathione


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of cardiovascular disease has increased in the general population, and cardiac damage is indicated as one important cause of mortality. In addition, pollution and metal exposure have increased in recent years. For this reason, toxic effects of metals, such as nickel, and their relation to cardiac damage should be urgently established. Although free radical-mediated cellular damage and reactive oxygen species have been theorized as contributing to the nickel mechanism of toxicity, recent investigations have established that free radicals may be important contributors to cardiac dysfunction. However, there is little information on the effect of nickel exposure on markers of oxidative stress in cardiac tissue. Nickel exposure (Ni2+ 100 mg L-1 from NiSO4) significantly increased lipoperoxide and total lipid concentrations in cardiac tissue. We also observed increased serum levels of cholesterol (59%), lactate dehydrogenase (LDH-64%), and alanine transaminase (ALT-30%) in study animals. The biochemical parameters recovered to the control values with tocopherol intake (0.2 mg 200 g-1). Vitamin E alone significantly decreased the lipoperoxide concentration and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the heart. Since no alterations were observed in catalase and GSH-Px activities by nickel exposure while SOD activities were decreased, we conclude that superoxide radical (O2 -) generated by nickel exposure is of primary importance in the pathogenesis of cardiac damage. Tocopherol, by its antioxidant activity, decreased the toxic effects of nickel exposure on heart of rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of toxic substances in the workplace environment requires systematic evaluation of exposure and health status in exposed subjects. Cadmium is a highly toxic element found in water. Although free mediated cellular damage and reactive oxygen species (ROS), had been theorized as contributing to the cadmium mechanism of toxicity, and recent investigations have established that free radicals may be important contributors to cardiac dysfunction, there is little information on the effect of cadmium exposure on markers of oxidative stress in cardiac tissue. Cadmium exposure (Cd2+ - 100 mg/1-from CdCl2) in drinking water, during 15 days, significantly increased lipoperoxide and decreased the activities of superoxide dismutase and glutathione peroxidase. No alterations were observed in catalase activity in heart of rats with cadmium exposure. We also observed decreased glycogen and glucose concentration and increased total lipid content in cardiac tissue of rats with cadmium exposure. The decreased activities of alanine transaminase and aspartate transaminase reflected decreased metabolic protein degradation, and increased lactate dehydrogenase activity was related with increases in capacity of glycolysis. Since the metabolic pathways were altered by cadmium exposure, we can conclude that Cd2+ exposure induced ROS and initiate some series of events that occur in the heart and resulted in metabolic pathways alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine whether a high energy dense diet intake increases oxidative stress and alters antioxidant enzymes in cardiac tissue. Design: A randomized, controlled study. Ninety-day-old female rats were randomly divided into two groups: one fed with a low energy dense diet (LE; 3.0 kcal g-1) and one with a high energy dense diet (HE; 4.5 kcal g-1). Materials and Methods: After 8 weeks of treatment, the animals were fasted overnight and sacrificed by decapitation. The serum was used for glucose, triacylglycerol, cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-cholesterol determinations. The glycogen, lipoperoxide, lipid hydroperoxide, superoxide dismutase, glutathione peroxidase, lactate dehydrogenase, citrate synthase, total and non-protein sulphhydryl groups were determined in cardiac tissue. Results: HE decreased the myocardial glycogen content and increased the lactate dehydrogenase/citrate synthase ratio, indicating an increased glycolytic pathway and a shift from myocardial aerobic metabolism. HE-treated female rats showed increased lipoperoxide and hydroperoxide levels in cardiac tissue. Although no alterations were observed in the total sulphhydryl group and superoxide dismutase activities, glutathione peroxidase and the non-protein sulphhydryl group were significantly decreased in HE-treated animals. Conclusions: Although no alterations were observed in energy intake, HE induced an increased intake of fat and carbohydrate and an increased rate of weight gain. HE intake induced alterations in markers of oxidative stress in cardiac tissue. Hydrogen peroxide is an important toxic intermediate in the development of cardiac oxidative stress by HE. The specific nutrient content, such as fat and carbohydrate, rather than caloric intake, appears to be the main process inducing oxidative stress in HE-treated female rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine the effect of dietary restriction on metabolic pathways and the relationship of the metabolic shifting on antioxidant enzymes in cardiac tissue. Design: Randomized, controlled study. Male rats at 60 days old were randomly divided into four groups. Materials and Methods: The rats of control groups C30 and C60 were given free access to the diet over 30 and 60 days. The rats of the DR30 group were fed 60% of the chow consumed by the control groups over 30 days. The animals of the DR60 group ate 60% of the amount consumed by the C60 group over 60 days. Serum was used for total protein, lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Protein, glycogen, total lipids, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), LDH, AST and ALT were determined in cardiac tissue. Results: Dietary restriction induced diminished serum and cardiac LDH activities. AST activities were lower in the serum and cardiac muscle of the DR60 animals. Dietary restriction induced elevated total lipid concentrations in cardiac muscle. No significant differences were observed in total protein and glycogen content among the groups. Antioxidant enzyme determinations demonstrated increased cardiac GSH-Px activities in the DR60 animals and increased SOD activities in the cardiac tissue of both feed-restricted groups. Conclusions: Dietary restriction was protective against oxidative stress in the heart by improving cardiac endogenous antioxidant defences and shifting the metabolic pathway for energy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary modification ought to be the first line of strategy in prevention of the development of cardiac disease. The purpose of this study was to investigate whether dietary restriction, dietary-fibre-enriched diet, and their interactions might affect antioxidant capacity and oxidative stress in cardiac tissue. Male Wistar rats (180-200 g; n = 10) were divided into four groups: control ad libitum diet (C), 50% restricted diet (DR), fed with fibre-enriched diet (F), and 50% restricted fibre-enriched diet (DR-F). After 35 days of the treatments, F, DR, and DR-F rats showed low cholesterol, LDL-cholesterol, and triacylglycerol, and high HDL-cholesterol in serum. The DR, DR-F, and F groups had decreased myocardial lipoperoxide and lipid hydroperoxide. The DR-F and F treatments increased superoxide dismutase and glutatione peroxidase (GSH-Px). The DR treatment increased GSH-Px and catalase activities. Dietary fibre beneficial effects were related to metabolic alterations. The F and DR-F groups showed high cardiac glycogen and low lactate dehydrogenase/citrate synthase ratios, indicating diminished anaerobic and elevated aerobic myocardial metabolism in these animals. There was no synergistic effect between dietary restriction and dietary fibre addition, since no differences were observed in markers of oxidative stress in the F and DR-F groups. Dietary fibre supplementation, rather than energy intake and dietary restriction, appears to be the main process retarding oxidative stress in cardiac tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of crude extracts of the mushroom Agaricus blazei Murrill (Agaricaceae) on both DNA damage and placental form glutathione S-transferase (GST-P)-positive liver foci induced by diethylnitrosamine (DEN) were investigated. Six groups of adult male Wistar rats were used. For two weeks, animals of groups 3 to 6 were treated with three aqueous solutions of A. blazei (mean dry weight of solids being 1.2, 5.6, 11.5 and 11.5 mg/ml, respectively). After this period, groups 2 to 5 were given a single ip injection 200 mg/kg DEN and groups 1 and 6 were treated with 0.9% NaCl. All animals were subjected to 70% partial hepatectomy at week five and sacrificed 4, 24 and 48 h or 8 weeks after DEN or 0.9% NaCl treatments (10th week after the beginning of the experiment). The alkaline comet assay and GST-P-positive liver foci development were used to evaluate the influence of the mushroom extracts on liver cell DNA damage and on the initiation of liver carcinogenesis, respectively. Previous treatment with the highest concentration of A. blazei (11.5 mg/ml) significantly reduced DNA damage, indicating a protective effect against DEN-induced liver cytotoxicity/genotoxicity. However, the same dose of mushroom extract significantly increased the number of GST-P-positive liver foci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein malnutrition leads to functional impairment in several organs, which is not fully restored with nutritional recovery. Little is known about the role of oxidative stress in the genesis of these alterations. This study was designed to assess the sensitivity of blood oxidative stress biomarkers to a dietary protein restriction. Male Wistar rats were divided into two groups, according to the diet fed from weaning (21 days) to 60 day old: normal protein (17% protein) and low protein (6% protein). Serum protein, albumin, free fatty acid and liver glycogen and lipids were evaluated to assess the nutritional status. Blood glutathione reductase (GR) and catalase (CAT) activities, plasma total sulfhydryl groups concentration (TSG) as well as plasma thiobarbituric acid reactive substances (TBARs) and reactive carbonyl derivatives (RCD) were measured as biomarkers of the antioxidant system and oxidative damage, respectively. The glucose metabolism in soleus muscle was also evaluated as an index of stress severity imposed to muscular mass by protein malnutrition. No difference was observed in muscle glucose metabolism or plasma RCD concentration between both groups. However, our results showed that the low protein group had higher plasma TBARs (62%) concentration and lower TSG (44%) concentration than control group, indicating increased reactive oxygen species production in low protein group. The enhancement of erythrocyte GR (29%) and CAT (28%) activities in this group also suggest an adaptation to the stress generated by the protein deficiency. Taken together, the results presented here show that the biomarkers used were able to reflect the oxidative stress level induced by this specific protein deficient diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caloric intake is higher than recommended in many populations. Therefore, enhancing olive oil intake alone may not be the most effective way to prevent cardiovascular diseases. The purpose of the present study was to analyse the association of olive oil and dietary restriction on lipid profile and myocardial antioxidant defences. Male Wistar rats (180-200 g, n = 6) were divided into 4 groups: control ad libitum diet (C), 50% restricted diet (DR), fed ad libitum and supplemented with olive oil (3 mL/(kg-day)) (OO), and 50% restricted diet and supplemented with olive oil (DROO). After 30 days of treatments, OO, DR, and DROO groups had increased total cholesterol and high-density lipoprotein cholesterol concentrations. DR and DROO animals showed decreased low-density lipoprotein cholesterol. DROO had the lowest low-density lipoprotein cholesterol concentration. Total lipids and triacylglycerols were raised by dietary restriction and diminished by olive oil. OO rats had higher myocardial Superoxide dismutase and lower catalase and glutathione peroxidase activities than C rats. DR and DROO showed enhanced cardiac Superoxide dismutase, catalase, and glutathione peroxidase activities from the control. Olive oil supplementation alone improved the lipid profile but was more effective when coupled with dietary restriction. There was a synergistic beneficial action of dietary restriction and olive oil on serum lipids and myocardial antioxidant defences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some hypotheses and constants studies are made with intention to elucidate the aging process. To prevent and to attenuate the cutaneous aging it becomes necessary to strengthen our endogenous antioxidant natural defenses. Diverse exogenous antioxidant substances, as vitamins, vegetal extracts and others, have been used by the Cosmetology in antiaging products. The objective of this paper is to show how the Molecular Modeling can be an useful tool in the research for new antioxidant cosmetic substances to face the cutaneous aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate whether handling and acclimatization could affect the biomarker responses in oysters Crassostrea gigas. Adult oysters were sampled in a farming area, subjected to handling stress during two hours (shell cleaning and transport), and then acclimatized in laboratory for 2, 3 and 4 weeks. Groups of five oysters were sampled before and after the handling (T0 and T1, respectively), and after 2, 3 and 4 weeks acclimatization. During the acclimatization, water was renewed daily, food given twice a day and temperature and salinity maintained at 22 °C and 25 ppt, respectively. One group, in another tank, was kept in similar conditions and was exposed for 1 week to 0.1 % diesel after the 2-weeks acclimatization period. After exposure, gills were immediately frozen in liquid N 2 for biochemical analyses. Higher expression of heat-shock proteins (HSP70) was observed after handling, and after acclimatization periods of 3-week and 4-week, compared to the T0 group. The diesel exposed group did not show elevated levels of HSP70, when compared to the 3-week acclimatized group. The activity of glutathione S-transferase (GST) was unchanged after handling, but was lower after all acclimatization periods, compared to the T0 group. Exposure to diesel caused an increase in GST activity compared to the 3-week acclimatized group, but not compared to T0. The activity of catalase (CAT), acetylcholinesterase (AChE), and the MDA levels remained unchanged during the whole experiment. These results point to the need of a special care in laboratory and field experiments employing HSP70 and GST as biomarkers. (Supported by CNPq-CTPetro to ACDB.). © 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coumarins represent an important class of phenolic compounds with multiple biological activities, including inhibition of lipidic peroxidation and neutrophil-dependent anion superoxide generation, anti-inflammatory and immunosuppressor actions. All of these proprieties are essential for that a drug may be used in the treatment of inflammatory bowel disease. The present study examined intestinal anti-inflammatory activity of coumarin and its derivative, the 4-hydroxycoumarin on experimental ulcerative colitis in rats. This was performed in two different experimental settings, i.e. when the colonic mucosa is intact or when the mucosa is in process of recovery after an initial insult. The results obtained revealed that the coumarin and 4-hydroxycoumarin, at doses of 5 and 25 mg/kg, significantly attenuated the colonic damage induced by trinitrobenzenesulphonic acid (TNBS) in both situations, as evidenced macroscopically, microscopically and biochemically. This effect was related to an improvement in the colonic oxidative status, since coumarin and 4-hydroxycoumarin prevented the glutathione depletion that occurred as a consequence of the colonic inflammation. © 2008 Pharmaceutical Society of Japan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anthracyclines constitute a group of drugs widely used for the treatment of a variety of human tumors. However, the development of irreversible cardiotoxicity has limited their use. Anthracycline-induced cardiotoxicity can persist for years with no clinical symptoms. However, its prognosis becomes poor after the development of overt heart failure, possibly even worse than ischemic or idiopathic dilated cardiomyopathies. Due to the successful action of anthracyclines as chemotherapic agents, several strategies have been tried to prevent/ attenuate their side effects. Although anthracycline-induced injury appears to be multifactorial, a common denominator among most of the proposed mechanisms is cellular damage mediated by reactive oxygen species. However, it remains controversial as to whether antioxidants can prevent such side effects given that different mechanisms may be involved in acute versus chronic toxicity. The present review applies a multisided approach to the critical evaluation of various hypotheses proposed over the last decade on the role of oxidative stress in cardiotoxicity induced by doxorubicin, the most used anthracycline agent. The clinical diagnosis and treatment is also discussed. © 2008 Bentham Science Publishers Ltd.