855 resultados para glucose infusion
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
Rabbits were experimentally infected with sporulated Eimeria stiedai oocysts. A total of 50 white adult rabbits, New Zealand race, were distributed into two groups: Group A was infected with 1x10 4 sporulated Eimeria stiedai oocysts, while group B was inoculated with distilled water as a control. The animals generally displayed increased levels of total protein, globulin, total cholesterol, LDL-c and triacylglycerols; however, total levels of liver lipids and HDL-c decreased, and plasma glucose levels varied during the experimental period. In sum, Eimeria stiedai infection of rabbits caused a considerable number of changes in the metabolism of lipids, proteins and glucose, which is likely due to direct effects of liver cirrhosis on normal body function.
Resumo:
Physical activity is considered an extremely effective therapy in cases of type 1 diabetes (DM-1), as it promotes glucose uptake independent of insulin action. However, there are few studies on the effect of a single session of exercise on glucose uptake in DM-1 (i.e., in the absence of insulin). Therefore, the purpose of this study was to assess the effect of a single exercise session on glucose homeostasis in DM-1 rats. For this purpose, 30 male rats were divided into three groups: sedentary control (SC), sedentary diabetic (SD), and exercise diabetic (ED). DM was induced by administration of alloxan and identified by the value of fasting glucose. The physical activity consisted of a single swimming session at the anaerobic threshold intensity for diabetic rats (3.5% body weight overload) for 30 min. The oral glucose tolerance test (OGTT) was performed immediately after the physical activity. The animals were sacrificed 48 hr after the OGTT, and samples were taken from the blood, liver, gastrocnemius, and mesenteric and subcutaneous adipose tissue. We observed that DM caused significant reduction in body weight. A single session of physical activity did not modify the response to the OGTT or glucose. However, it resulted in increased HDL cholesterol and hepatic glycogen content. These results suggest that, despite not having an effect on glucose homeostasis, acute physical activity performed at anaerobic threshold intensity leads to beneficial changes in the context of type 1 diabetes.
Resumo:
This study aimed to compare the glycemic values obtained with a glucometer with those determined by a colorimetric enzymatic assay in venous blood as well as to evaluate the possibility of using capillary blood samples of dogs with diabetes mellitus. A group with 30 diabetic dogs was formed and from each dog three blood samples were obtained for glycemic evaluations by different methods and blood collection sites. The mean glycemic values showed no significant difference between the different sites of blood collection and methods (P=0.90). Venous, pinna and carpal pad blood glucose showed excellent correlation with the colorimetric enzymatic assay (r=0.98; r=0.95 and r=0.96 respectively) and the obtained values fit properly the clinically acceptable intervals in the error grid analysis. The present study revealed that carpal pad, venous and pinna glucose measurements are clinically acceptable and this method is feasible for use in hospitalized diabetic dogs. The sample attainment of carpal pad proved to be effective and a viable alternative. Further work is necessary to assess the utility of this technique in a home environment.
Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis
Resumo:
Tannases have attracted wider attention because of their biotechnological potential, especially enzymes from filamentous fungi and other microorganisms. However, the biodiversity of these microorganisms has been poorly explored, and few strains were identified for tannase production and characterization. This article describes the production, purification and characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. High enzymatic levels were obtained in Khanna medium containing tannic acid up to 72 h at 30 °C under 100 rpm. The purified enzyme with 65% of carbohydrate content had an apparent native molecular mass of 218 kDa with subunits of 120 kDa and 93 kDa and was stable at 50 °C for 1 h. Optima of temperature and pH were 60 °C and 5.0-6.5, respectively. The enzyme was not affected significantly by most ions, detergents and organic solvents. While glucose did not affect the tannase activity, the addition of a high concentration of gallic acid did. The Km values were 1.7 mM (tannic acid), 14.3 mM (methyl-gallate) and 0.6 mM (propyl-gallate). The enzyme was able to catalyze the transesterification reaction to produce propyl-gallate. All biochemical properties suggest the biotechnological potential of the glucose- and solvent-tolerant tannase from A. phoenicis. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals that are capable of inducing cell death. The present study evaluated the susceptibility of Streptococcus mutans and Lactobacillus acidophilus to PDT grown as multi-species in the biofilm phase versus in dentine carious lesions. A brain-heart infusion culture medium supplemented with 1 % glucose, 2 % sucrose, and 1 % young primary culture of L. acidophilus 108 CFU/mL and S. mutans 108 CFU/mL was used to develop multi-species biofilms and to induce caries on human dentine slabs. Five different concentrations of curcumin (0.75, 1.5, 3.0, 4.0, and 5.0 g/L) were used associated with 5.7 J/cm2 light emission diode. Four different groups were analyzed L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (PDT group). ANOVA/Tukey's tests were conducted to compare groups. A significant reduction (p <0.05) in cell viability was observed in the biofilm phase following photosensitization with all curcumin concentrations tested. To achieve significant bacterial reduction (p <0.05) in carious dentine, it was necessary to utilize 5.0 g/L of curcumin in association with blue light. No significant reduction was found for L-D+, supporting the absence of the drug's dark toxicity. S. mutans and L. acidophilus were susceptible to curcumin in the presence of blue light. However, due to light penetration and drug diffusion difficulties, these microorganisms within dentine carious lesions were less affected than they were in the biofilm phase. © 2013 Springer-Verlag London.
Resumo:
Obese Black women are at increased risk for development of gestational diabetes mellitus and have worse perinatal outcomes than do obese women of other ethnicities. Since hsp72 has been associated with the regulation of obesity-induced insulin resistance, we evaluated associations between glucose ingestion, hsp72 release and insulin production in Black pregnant women. Specifically, the effect of a 50-g glucose challenge test (GCT) on heat shock protein and insulin levels in the circulation 1 h later was evaluated. Hsp27 and hsp60 levels remained unchanged. In contrast, serum levels of hsp72 markedly increased after glucose ingestion (p = 0.0054). Further analysis revealed that this increase was limited to women who were not obese (body mass index <30). Insulin levels pre-GCT were positively correlated with body mass index (p = 0.0189). Median insulin concentrations also increased post GCT in non-obese women but remained almost unchanged in obese women. Post-GCT serum hsp72 concentrations were inversely correlated with post GCT insulin concentrations (p = 0.0111). These observations suggest that glucose intake during gestation in Black women rapidly leads to an elevation in circulating hsp72 only in non-obese Black women. The release of hsp72 may regulate the extent of insulin production in response to a glucose challenge and, thereby, protect the mother and/or fetus from development of hyperglycemia, hyperinsulinemia, and/or immune system alterations. © 2013 Cell Stress Society International.
Resumo:
Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.
Resumo:
Constant rate infusion (CRI) shows several advantages in balanced anesthesia, such as reduction of requirement for inhaled anesthetics and control of pain. The most commonly used drugs in these protocols are local anesthetics, dissociative, and opioids, which may be administered alone or in combinations. We evaluated the records of 200 dogs that underwent various surgical procedures with anesthetic or analgesic CRI in the perioperative period during 2011 and 2012 at the Veterinary Hospital of Franca University (Unifran), and identified possible complications during the transoperative period. Records evaluated included clinical state, laboratory tests, drugs used in premedication and induction, and CRI protocol. Acepromazine and morphine were the main drugs used in premedication. Propofol was used to induce anesthesia alone or in combination with other agents. We evaluated records of the 25 different CRI protocols. Fentanyl was the main drug employed in CRI, either alone or in combination. There were 128 episodes of anesthetic complications during CRI;the most common were hypotension, hypertension, and tachycardia, which occurred in 43 (32%), 35 (26.3%), and 19 (14.2%) dogs, respectively. Cardiac arrhythmia was reported in only 4 dogs. Signs of respiratory depression were present in dogs treated with 6 different CRI protocols. The consumption of isoflurane (vol %) reduced between 15.7% and 21.05% after 30minutes of the CRI in the fentanyl and fentanyl-lidocaine-ketamine CRI groups (p<0.05). In conclusion, CRI is a valid component of balanced anesthesia in dogs, safe, and has a low incidence of adverse effects. However, future studies are warranted to describe the results of the clinical use of CRI to better characterize and refine this technique.
Resumo:
Aim: Chronic exposure to intermittent hypoxia commonly induces the activation of sympathetic tonus and the disruption of glucose homoeostasis. However, the effects of exposure to acute intermittent hypoxia (AIH) on glucose homoeostasis are not yet fully elucidated. Herein, we evaluated parameters related to glucose metabolism in rats exposed to AIH. Methods: Male adult rats were submitted to 10 episodes of hypoxia (6% O2, for 45 s) interspersed with 5-min intervals of normoxia (21%), while the control (CTL) group was kept in normoxia. Results: Acute intermittent hypoxia rats presented higher fasting glycaemia, normal insulinaemia, increased lactataemia and similar serum lipid levels, compared to controls (n = 10, P < 0.05). Additionally, AIH rats exhibited increased glucose tolerance (GT) (n = 10, P < 0.05) and augmented insulin sensitivity (IS) (n = 10, P < 0.05). The p-Akt/Akt protein ratio was increased in the muscle, but not in the liver and adipose tissue of AIH rats (n = 6, P < 0.05). The elevated glycaemia in AIH rats was associated with a reduction in the hepatic glycogen content (n = 10, P < 0.05). Moreover, the AIH-induced increase in blood glucose concentration, as well as reduced hepatic glycogen content, was prevented by prior systemic administration of the β-adrenergic antagonist (P < 0.05). The effects of AIH on glycaemia and Akt phosphorylation were transient and not observed after 60 min. Conclusions: We suggest that AIH induces an increase in blood glucose concentration as a result of hepatic glycogenolysis recruitment through sympathetic activation. The augmentation of GT and IS might be attributed, at least in part, to increased β-adrenergic sympathetic stimulation and Akt protein activation in skeletal muscles, leading to a higher glucose availability and utilization. © 2013 Scandinavian Physiological Society.
Resumo:
Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L-1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application. © 2013 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)