946 resultados para gene integration and expression
Resumo:
Immunohistochemical analysis of the p53 gene protein and cytometric assessment of nuclear DNA were performed in a series of 51 cases of intraductal breast proliferation. The series included 22 cases of intraductal hyperplasia without atypia, 6 cases of intraductal hyperplasia with atypia, and 23 cases of pure intraductal carcinoma. Expression of p53 protein was detected in one case of intraductal hyperplasia without atypia (4.5 per cent), one case of intraductal hyperplasia with atypia (16.6 per cent) and six cases of intraductal carcinoma (26.0 per cent). No significant correlation was observed between p53 expression and histological subtype of intraductal carcinoma. Aneuploidy was demonstrated in two cases of intraductal hyperplasia with atypia (33.3 per cent) and in 18 cases of intraductal carcinoma (78.2 per cent). All cases of intraductal hyperplasia without atypia were euploid. No significant association was observed between p53 protein expression and ploidy in intraductal hyperplasia. The only case of intraductal hyperplasia without atypia positive for p53 was euploid, whereas the only p53-positive case of intraductal hyperplasia with atypia was aneuploid. Among the intraductal carcinomas, only the aneuploid cases showed positivity for p53, regardless of histological subtype. The results suggest that some of the changes observed in invasive breast carcinoma, such as p53 expression and aneuploidy, are already present in breast intraductal proliferation, especially in areas with atypia and in intraductal carcinoma. The expression of p53 in breast intraductal proliferation may reflect the acquisition of p53 gene mutations in cells unable adequately to repair DNA damage, with genomic instability which would lead to clonal expansion and putative evolution to invasive disease.
Resumo:
The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counter-regulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages-cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS. Copyright © American Society for Investigative Pathology.
Resumo:
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. © 2006 Coelho-Castelo et al; licensee BioMed Central Ltd.
Resumo:
This study was performed to compare CAPN1, CAPN2, CAST, TG, DGAT1 and LEP gene expressions and correlate them with meat quality traits in two genetic groups (Nellore and Canchim) in order to assess their expression profile and use their expression profile as genetic markers. We analyzed 30 young bulls (1. year old), 15 of each genetic group. Samples of the Longissimus dorsi muscle were collected for analysis of: total lipids (TL) and meat tenderness measured as Warner-Bratzler shear force (SF) and myofibrillar fragmentation (MFI) at day of slaughter and 7. days of aging. Gene expression profiles were obtained via RT-qPCR. TL and MFI showed differences between breeds, higher MFI in Canchim and higher TL in Nellore. Calpains showed no differential expression between groups, as did DGAT1, TG, and LEP. CAST was expressed more in the Nellore cattle. The only significant within-breed correlation (0.79) between gene expression and meat traits was found for DGAT1 and MFI in Canchim breed. Although the number of animals used in this study was small, the results indicate that the increased expression of CAST in Nellore may reflect tougher meat, but the lack of correlations with the meat traits indicates it is not a promising genetic marker. © 2013 Elsevier Ltd.
Resumo:
HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-gamma and NF-kappa B, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3' UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Coccidiosis of the domestic fowl is a worldwide disease caused by seven species of protozoan parasites of the genus Eimeria. The genome of the model species, Eimeria tenella, presents a complexity of 55-60 MB distributed in 14 chromosomes. Relatively few studies have been undertaken to unravel the complexity of the transcriptome of Eimeria parasites. We report here the generation of more than 45,000 open reading frame expressed sequence tag (ORESTES) cDNA reads of E. tenella, Eimeria maxima and Eimeria acervulina, covering several developmental stages: unsporulated oocysts, sporoblastic oocysts, sporulated oocysts, sporozoites and second generation merozoites. All reads were assembled to constitute gene indices and submitted to a comprehensive functional annotation pipeline. In the case of E. tenella, we also incorporated publicly available ESTs to generate an integrated body of information. Orthology analyses have identified genes conserved across different apicomplexan parasites, as well as genes restricted to the genus Eimeria. Digital expression profiles obtained from ORESTES/EST countings, submitted to clustering analyses, revealed a high conservation pattern across the three Eimeria spp. Distance trees showed that unsporulated and sporoblastic oocysts constitute a distinct clade in all species, with sporulated oocysts forming a more external branch. This latter stage also shows a close relationship with sporozoites, whereas first and second generation merozoites are more closely related to each other than to sporozoites. The profiles were unambiguously associated with the distinct developmental stages and strongly correlated with the order of the stages in the parasite life cycle. Finally, we present The Eimeria Transcript Database (http://www.coccidia.icb.usp.br/eimeriatdb), a website that provides open access to all sequencing data, annotation and comparative analysis. We expect this repository to represent a useful resource to the Eimeria scientific community, helping to define potential candidates for the development of new strategies to control coccidiosis of the domestic fowl. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vaquero AR, Ferreira NE, Omae SV, Rodrigues MV, Teixeira SK, Krieger JE, Pereira AC. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol Genomics 44: 903-914, 2012. First published August 7, 2012; doi:10.1152/physiolgenomics.00030.2012.-The single nucleotide polymorphism (SNP) within the TCF7L2 gene, rs7903146, is, to date, the most significant genetic marker associated with Type 2 diabetes mellitus (T2DM) risk. Nonetheless, its functional role in disease pathology is poorly understood. The aim of the present study was to investigate, in vascular smooth muscle cells from 92 patients undergoing aortocoronary bypass surgery, the contribution of this SNP in T2DM using expression levels and expression correlation comparison approaches, which were visually represented as gene interaction networks. Initially, the expression levels of 41 genes (seven TCF7L2 splice forms and 40 other T2DM relevant genes) were compared between rs7903146 wild-type (CC) and T2DM-risk (CT + TT) genotype groups. Next, we compared the expression correlation patterns of these 41 genes between groups to observe if the relationships between genes were different. Five TCF7L2 splice forms and nine genes showed significant expression differences between groups. RXR alpha gene was pinpointed as showing the most different expression correlation pattern with other genes. Therefore, T2DM risk alleles appear to be influencing TCF7L2 splice form's expression in vascular smooth muscle cells, and RXR alpha gene is pointed out as a treatment target candidate for risk reduction in individuals with high risk of developing T2DM, especially individuals harboring TCF7L2 risk genotypes.
Resumo:
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system.